For perfectly rigid bodies, the elastic constants, Y,B and n are
(A) Y=B=n=0
(B)Y=B=n=infinity
(C) Y=2B=3n
(D) Y=B=n=0.5
Answer
Verified
477.9k+ views
Hint: Use the concept of Hooke's law for the determination of the values of the elastic constant under the various loading conditions. Hooke’s law relates the stress and strain occurring in the object due to the loading.
Complete step by step answer
When load is applied on the body, then its behavior depends on the state, shape and size of the object. The body whose deformation is almost equal to zero under the loading condition is known as rigid body. The body which deforms due to the loading condition is not considered as a rigid body. Due to the loading condition, the generation of stress and strain takes place inside the body, and the relation between the stress and strain occurring in the body is determined with the help of Hooke's law.
The strain produced due to the loading condition on the body can give the value of the elastic constant. Here strain means the change in the shape of the body from its initial shape due to the external loading. The rigid body shows zero deformation in the loading condition, so the value of the strain is zero, and due to this the values of modulus of elasticity (elastic constant) becomes infinity because strain relates inversely with the elastic constant.
Therefore, option (B) is correct that is Y=B=n=infinity
Note: The Hook’s use the elastic constant to relate the stress and strain occurred in the body. The elastic constant related directly with the stress and inversely with the strain.
Complete step by step answer
When load is applied on the body, then its behavior depends on the state, shape and size of the object. The body whose deformation is almost equal to zero under the loading condition is known as rigid body. The body which deforms due to the loading condition is not considered as a rigid body. Due to the loading condition, the generation of stress and strain takes place inside the body, and the relation between the stress and strain occurring in the body is determined with the help of Hooke's law.
The strain produced due to the loading condition on the body can give the value of the elastic constant. Here strain means the change in the shape of the body from its initial shape due to the external loading. The rigid body shows zero deformation in the loading condition, so the value of the strain is zero, and due to this the values of modulus of elasticity (elastic constant) becomes infinity because strain relates inversely with the elastic constant.
Therefore, option (B) is correct that is Y=B=n=infinity
Note: The Hook’s use the elastic constant to relate the stress and strain occurred in the body. The elastic constant related directly with the stress and inversely with the strain.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE