
For r = 0, 1, 2,.….10, let \[{{A}_{r}},{{B}_{r}},{{\text{C}}_{r}}\] denote respectively the coefficient of \[{{x}^{r}}\] in the expansions of
\[{{\left( 1+x \right)}^{10}},{{\left( 1+x \right)}^{20}},{{\left( 1+x \right)}^{30}}\] . Then find the value of:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
(a) \[{{B}_{10}}-{{C}_{10}}\]
(b) \[{{A}_{10}}\left( B_{10}^{2}-{{C}_{10}}{{A}_{10}} \right)\]
(c) 0
(d) \[{{C}_{10}}-{{B}_{10}}\]
Answer
600.3k+ views
Hint: First solve the term inside sigma algebraically, and then separate it into two terms.
After that see if you can convert the term sigma into coefficients from any expansion and urm everything in terms of A,B, C. \[\]
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]. By using this find the A, B, C and their relation.
Complete step-by-step answer:
By using binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
By using above theorem,
\[{{A}_{r}}={}^{10}{{C}_{r}}.....\left( 1 \right)\]
By applying this to find B, C, we get:
\[\begin{align}
& {{B}_{r}}={}^{20}{{C}_{r}}.....\left( 2 \right) \\
& {{C}_{r}}={}^{30}{{C}_{r}}.....\left( 3 \right) \\
\end{align}\]
We require the value of expression:
\[\sum\limits_{r=01}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
By simplifying, we get:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}{{B}_{10}}-{{C}_{10}}A_{r}^{2}}\]
By separating it into 2 terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}^{2}}\]
By substituting equation (1), equation (2), and equation (3) into the expression, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}.....\left( 4 \right)\].
Now we will separate terms from this expression.
Case-1
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}.....\left( 5 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{30}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{20}}\]
For finding the coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] by above expression we will have 10 cases.
\[1.{{x}^{20}},x.{{x}^{19}},.......,{{x}^{10}}.{{x}^{10}}\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] is equal to coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}=\] \[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] - 1).
Case-2
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}.....\left( 6 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{10}}\]
For finding the coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] by above expression we will have 10 cases.
\[1.{{x}^{10}},x.{{x}^{9}},.......,{{x}^{10}}.1\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] is equal to coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}=\] \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1).
Substitute these back into equation (4):
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]-1) - \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1)…..(7)
By binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]= \[{}^{30}{{C}_{20}}\]
Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\]=\[{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting these into equation (7), we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}\left( {}^{30}{{C}_{20}}-1 \right)-{}^{30}{{C}_{10}}\left( {}^{20}{{C}_{10}}-1 \right)\]
By simplifying, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}.{}^{30}{{C}_{20}}-{}^{20}{{C}_{10}}-{}^{30}{{C}_{10}}.{}^{20}{{C}_{10}}+{}^{30}{{C}_{10}}\]
Observe:
\[{}^{30}{{C}_{20}}={}^{30}{{C}_{10}}\]
By cancelling common terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{30}{{C}_{10}}-{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting the above values, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{C}_{10}}-{{B}_{10}}\]
Therefore option (d) is correct.
Note: Applying Binomial theorem is a crucial step in the solution. Be careful while applying, if you write any number wrong you may lead to the wrong answer.
The idea of substituting B, C and getting them back is also important, just be careful while substituting if you do wrong you get negative of the answer which is also present in options. So don’t be confused.
After that see if you can convert the term sigma into coefficients from any expansion and urm everything in terms of A,B, C. \[\]
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]. By using this find the A, B, C and their relation.
Complete step-by-step answer:
By using binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
By using above theorem,
\[{{A}_{r}}={}^{10}{{C}_{r}}.....\left( 1 \right)\]
By applying this to find B, C, we get:
\[\begin{align}
& {{B}_{r}}={}^{20}{{C}_{r}}.....\left( 2 \right) \\
& {{C}_{r}}={}^{30}{{C}_{r}}.....\left( 3 \right) \\
\end{align}\]
We require the value of expression:
\[\sum\limits_{r=01}^{10}{{{A}_{r}}\left( {{B}_{r}}{{B}_{10}}-{{C}_{10}}{{A}_{r}} \right)}\]
By simplifying, we get:
\[\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}{{B}_{10}}-{{C}_{10}}A_{r}^{2}}\]
By separating it into 2 terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}{{B}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{A}_{r}}^{2}}\]
By substituting equation (1), equation (2), and equation (3) into the expression, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}.....\left( 4 \right)\].
Now we will separate terms from this expression.
Case-1
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}.....\left( 5 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{30}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{20}}\]
For finding the coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] by above expression we will have 10 cases.
\[1.{{x}^{20}},x.{{x}^{19}},.......,{{x}^{10}}.{{x}^{10}}\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{20-r}}}\] is equal to coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}=\] \[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\] - 1).
Case-2
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}.....\left( 6 \right)\]
We know combinations property:
\[{}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}\]
By using the above combinations property, we get:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\]
As we can see, by binomial theorem we can say
\[{{\left( 1+x \right)}^{20}}={{\left( 1+x \right)}^{10}}{{\left( 1+x \right)}^{10}}\]
For finding the coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] by above expression we will have 10 cases.
\[1.{{x}^{10}},x.{{x}^{9}},.......,{{x}^{10}}.1\]
By adding the coefficients of all cases above, we get:
\[\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] \[\]
The value of \[\sum\limits_{r=0}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{10-r}}}\] is equal to coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\].
As r = 1 is given instead of r = 0, we need to subtract 1.
So the equation (5) turns out to be:
\[{{C}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{10}{{C}_{r}}}=\] \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1).
Substitute these back into equation (4):
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{B}_{10}}.\](Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]-1) - \[{{C}_{10}}.\](Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\] - 1)…..(7)
By binomial theorem:
Coefficient of \[{{x}^{r}}\] in expansion of \[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{r}}\]
Coefficient of \[{{x}^{20}}\] in \[{{\left( 1+x \right)}^{30}}\]= \[{}^{30}{{C}_{20}}\]
Coefficient of \[{{x}^{10}}\] in \[{{\left( 1+x \right)}^{20}}\]=\[{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting these into equation (7), we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}\left( {}^{30}{{C}_{20}}-1 \right)-{}^{30}{{C}_{10}}\left( {}^{20}{{C}_{10}}-1 \right)\]
By simplifying, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{20}{{C}_{10}}.{}^{30}{{C}_{20}}-{}^{20}{{C}_{10}}-{}^{30}{{C}_{10}}.{}^{20}{{C}_{10}}+{}^{30}{{C}_{10}}\]
Observe:
\[{}^{30}{{C}_{20}}={}^{30}{{C}_{10}}\]
By cancelling common terms, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{}^{30}{{C}_{10}}-{}^{20}{{C}_{10}}\]
\[\begin{align}
& {{B}_{10}}={}^{20}{{C}_{10}} \\
& {{C}_{10}}={}^{30}{{C}_{10}} \\
\end{align}\]
By substituting the above values, we get:
\[{{B}_{10}}\sum\limits_{r=1}^{10}{{}^{10}{{C}_{r}}{}^{20}{{C}_{r}}}-{{C}_{10}}\sum\limits_{r=1}^{10}{{{\left( {}^{10}{{C}_{r}} \right)}^{2}}}=\]\[{{C}_{10}}-{{B}_{10}}\]
Therefore option (d) is correct.
Note: Applying Binomial theorem is a crucial step in the solution. Be careful while applying, if you write any number wrong you may lead to the wrong answer.
The idea of substituting B, C and getting them back is also important, just be careful while substituting if you do wrong you get negative of the answer which is also present in options. So don’t be confused.
Recently Updated Pages
Fusiform roots are found in a Solanum tuberosum b Colocasia class 11 biology CBSE

The enthalpy of combustion of methane graphite and class 11 chemistry CBSE

Two particles executing SHM of same frequency meet class 11 physics CBSE

Construct the formula of the following compounds using class 11 chemistry CBSE

A metallic rod of length l and cross section area A class 11 physics CBSE

Democracy stands much superior to any other form of class 11 social science CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

