Answer
Verified
442.8k+ views
Hint: Method of completing the square is a method which is used to find out the roots of a quadratic equation Having Degree 2. Following are the steps to solve a quadratic equation by the method of completing the square. Do add and subtract the square of half of x, then separate the variables, constant, and solve them.
Complete step-by-step answer:
We are given the quadratic equation \[{x^2} + 8x = - 15\]
\[ \Rightarrow \]\[{x^2} + 8x + 15 = 0...........(1)\]
For this matter add and subtract the term square of half the coefficient of \[x\] here coefficient of is \[8\], half of \[8\] is for and the square of \[4\] is \[16\].
Therefore add and subtract \[16\] in \[(1)\].
\[ \Rightarrow \]\[{x^2} + 8x + 16 + 15-16 = 0\]
Here combining the first three terms and using formula \[{a^2} + {b^2} + 2ab = {(a + b)^2}\].
\[ \Rightarrow \]\[{(x)^2} + (2x)(4x) + {(4)^2} - 1 = 0\]
\[ \Rightarrow \]\[{(x + 4)^2} - 1 = 0\]
\[ \Rightarrow \]\[{(x + 4)^2} = 1\]
Taking square root on both sides \[x + 4 = \pm 1\]
which given 2 values \[x + 4 = 1\] and \[x + 4 = - 1\]
\[ \Rightarrow \]\[x = 1 - 4\] and \[x = - 1 - 4\]
So the value of \[x = - 3\] and \[x = - 5\]
Which given two values \[ - 3, - 5\]
Therefore we get two values of variable \[x\] as \[ - 3\] and \[ - 5\]
Therefore on solving the quadratic equation by the method of completing squares, we should get two values of variables and those two values both variables are \[ - 3\] and \[ - 5.\]
Note: There are three methods to solve quadratic equations. A quadratic equation is of the type \[a{x^2} + bx + c = 0\] where \[a,{\text{ }}b,{\text{ }}c,\] are constants (whose value is fixed) and N is the variable(whose value varies) and the three methods of solving quadratic equations are
> Middle term splitting
> Method of completing squares
> Method of discriminant
And with any of these three methods, the two values of the variable in each metal is the same as when solving with the other two methods.
Complete step-by-step answer:
We are given the quadratic equation \[{x^2} + 8x = - 15\]
\[ \Rightarrow \]\[{x^2} + 8x + 15 = 0...........(1)\]
For this matter add and subtract the term square of half the coefficient of \[x\] here coefficient of is \[8\], half of \[8\] is for and the square of \[4\] is \[16\].
Therefore add and subtract \[16\] in \[(1)\].
\[ \Rightarrow \]\[{x^2} + 8x + 16 + 15-16 = 0\]
Here combining the first three terms and using formula \[{a^2} + {b^2} + 2ab = {(a + b)^2}\].
\[ \Rightarrow \]\[{(x)^2} + (2x)(4x) + {(4)^2} - 1 = 0\]
\[ \Rightarrow \]\[{(x + 4)^2} - 1 = 0\]
\[ \Rightarrow \]\[{(x + 4)^2} = 1\]
Taking square root on both sides \[x + 4 = \pm 1\]
which given 2 values \[x + 4 = 1\] and \[x + 4 = - 1\]
\[ \Rightarrow \]\[x = 1 - 4\] and \[x = - 1 - 4\]
So the value of \[x = - 3\] and \[x = - 5\]
Which given two values \[ - 3, - 5\]
Therefore we get two values of variable \[x\] as \[ - 3\] and \[ - 5\]
Therefore on solving the quadratic equation by the method of completing squares, we should get two values of variables and those two values both variables are \[ - 3\] and \[ - 5.\]
Note: There are three methods to solve quadratic equations. A quadratic equation is of the type \[a{x^2} + bx + c = 0\] where \[a,{\text{ }}b,{\text{ }}c,\] are constants (whose value is fixed) and N is the variable(whose value varies) and the three methods of solving quadratic equations are
> Middle term splitting
> Method of completing squares
> Method of discriminant
And with any of these three methods, the two values of the variable in each metal is the same as when solving with the other two methods.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE