Answer
Verified
396.6k+ views
Hint: In this problem, A nonzero vector is a vector with magnitude not equal to zero. The vector obtained by rotating the vector \[\overrightarrow V \] by an angle \[\alpha \] in the anticlockwise direction is defined by trigonometric formula. A vector is an object that has both a magnitude and a direction.
Complete step-by-step answer:
First, we have to sketch a diagram for some non-zero vector \[\overrightarrow V \], if the sum of \[\overrightarrow V \] and the vector obtained from \[\overrightarrow V \] by rotating it by an angle \[2\alpha \] equals to the vector obtained from \[\overrightarrow V \] by rotating it by a then the value of \[\alpha \], is where \[n\] is a integer.
According to the condition in this problem, the vector obtained by rotating the vector \[\overrightarrow V \] by an angle\[\alpha \] in the anticlockwise direction, then
\[vi - v\cos (\pi - 2\alpha )\hat i + v\sin (\pi - 2\alpha )\hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
We use the trigonometric identity $\cos (\pi - \theta ) = - \cos \theta $ and $\sin (\pi - \theta ) = \sin \theta $, we can get
Since, $\cos (\pi - 2\alpha ) = - \cos 2\alpha $ and $\sin (\pi - 2\alpha ) = \sin 2\alpha $
\[v\hat i - v( - cos2\alpha \hat i) + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\],
\[v\hat i + vcos2\alpha \hat i + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
Put common factor ‘v’ from bracket, we have
\[v(1 + cos2\alpha )\hat i + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
On separating i and j part on both sides of the equation, then
\[v(1 + \cos 2\alpha ) = v\cos \alpha \] and $v\sin 2\alpha = v\sin \alpha $
By dividing on both sides by ‘v’, we get
\[(1 + \cos 2\alpha ) = \cos \alpha \] and $\sin 2\alpha = \sin \alpha $
Here, by using this trigonometric identity , $\cos 2\alpha = 2{\cos ^2}\alpha - 1$ and $2\sin \alpha \cos \alpha = \sin \alpha $
\[1 + 2{\cos ^2}\alpha - 1 = \cos \alpha \] and $2\sin \alpha \cos \alpha = \sin \alpha $
On further simplification, we get
\[2{\cos ^2}\alpha = \cos \alpha \] and $2\cos \alpha = 1$
\[2{\cos ^2}\alpha - \cos \alpha = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Take out \[\cos \alpha \] commonly on the first function, then
\[\cos \alpha (2\cos \alpha - 1) = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Separate the factors to find the value of , then
\[\cos \alpha = 0\], \[(2\cos \alpha - 1) = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Expanding the equation from LHS to RHS, then
\[\cos \alpha = 0\], \[2\cos \alpha = 1 \Rightarrow \cos \alpha = \dfrac{1}{2}\] and \[\cos \alpha = \dfrac{1}{2}\]
\[\cos \alpha = 0\],\[\cos \alpha = \dfrac{1}{2}\] and $\cos \alpha = \dfrac{1}{2}$
We know that, the formula $\cos \dfrac{\pi }{2} = 0 \Rightarrow \alpha = 2n\pi \pm \dfrac{\pi }{2}$ and $\cos \dfrac{\pi }{3} = \dfrac{1}{2} \Rightarrow \alpha = 2n\pi \pm \dfrac{\pi }{3}$,
$\alpha = 2n\pi \pm \dfrac{\pi }{2}$, $\alpha = 2n\pi \pm \dfrac{\pi }{3}$ and $\alpha = 2n\pi \pm \dfrac{\pi }{3}$
Therefore, $\alpha = 2n\pi \pm \dfrac{\pi }{3}$ satisfies both equations.
Hence, The final answer is option(A) \[2n\pi = \dfrac{\pi }{3}\]
So, the correct answer is “Option A”.
Note: Geometrically, we can define a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction. The direction of the vector is from its tail to its head.
Complete step-by-step answer:
First, we have to sketch a diagram for some non-zero vector \[\overrightarrow V \], if the sum of \[\overrightarrow V \] and the vector obtained from \[\overrightarrow V \] by rotating it by an angle \[2\alpha \] equals to the vector obtained from \[\overrightarrow V \] by rotating it by a then the value of \[\alpha \], is where \[n\] is a integer.
According to the condition in this problem, the vector obtained by rotating the vector \[\overrightarrow V \] by an angle\[\alpha \] in the anticlockwise direction, then
\[vi - v\cos (\pi - 2\alpha )\hat i + v\sin (\pi - 2\alpha )\hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
We use the trigonometric identity $\cos (\pi - \theta ) = - \cos \theta $ and $\sin (\pi - \theta ) = \sin \theta $, we can get
Since, $\cos (\pi - 2\alpha ) = - \cos 2\alpha $ and $\sin (\pi - 2\alpha ) = \sin 2\alpha $
\[v\hat i - v( - cos2\alpha \hat i) + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\],
\[v\hat i + vcos2\alpha \hat i + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
Put common factor ‘v’ from bracket, we have
\[v(1 + cos2\alpha )\hat i + v\sin 2\alpha \hat j = v\cos \alpha \hat i + v\sin \alpha \hat j\]
On separating i and j part on both sides of the equation, then
\[v(1 + \cos 2\alpha ) = v\cos \alpha \] and $v\sin 2\alpha = v\sin \alpha $
By dividing on both sides by ‘v’, we get
\[(1 + \cos 2\alpha ) = \cos \alpha \] and $\sin 2\alpha = \sin \alpha $
Here, by using this trigonometric identity , $\cos 2\alpha = 2{\cos ^2}\alpha - 1$ and $2\sin \alpha \cos \alpha = \sin \alpha $
\[1 + 2{\cos ^2}\alpha - 1 = \cos \alpha \] and $2\sin \alpha \cos \alpha = \sin \alpha $
On further simplification, we get
\[2{\cos ^2}\alpha = \cos \alpha \] and $2\cos \alpha = 1$
\[2{\cos ^2}\alpha - \cos \alpha = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Take out \[\cos \alpha \] commonly on the first function, then
\[\cos \alpha (2\cos \alpha - 1) = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Separate the factors to find the value of , then
\[\cos \alpha = 0\], \[(2\cos \alpha - 1) = 0\] and \[\cos \alpha = \dfrac{1}{2}\]
Expanding the equation from LHS to RHS, then
\[\cos \alpha = 0\], \[2\cos \alpha = 1 \Rightarrow \cos \alpha = \dfrac{1}{2}\] and \[\cos \alpha = \dfrac{1}{2}\]
\[\cos \alpha = 0\],\[\cos \alpha = \dfrac{1}{2}\] and $\cos \alpha = \dfrac{1}{2}$
We know that, the formula $\cos \dfrac{\pi }{2} = 0 \Rightarrow \alpha = 2n\pi \pm \dfrac{\pi }{2}$ and $\cos \dfrac{\pi }{3} = \dfrac{1}{2} \Rightarrow \alpha = 2n\pi \pm \dfrac{\pi }{3}$,
$\alpha = 2n\pi \pm \dfrac{\pi }{2}$, $\alpha = 2n\pi \pm \dfrac{\pi }{3}$ and $\alpha = 2n\pi \pm \dfrac{\pi }{3}$
Therefore, $\alpha = 2n\pi \pm \dfrac{\pi }{3}$ satisfies both equations.
Hence, The final answer is option(A) \[2n\pi = \dfrac{\pi }{3}\]
So, the correct answer is “Option A”.
Note: Geometrically, we can define a vector as a directed line segment, whose length is the magnitude of the vector and with an arrow indicating the direction. The direction of the vector is from its tail to its head.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE