Answer
Verified
422.1k+ views
Hint : We can find the refractive index corresponding to minimum deviation by using a prism formula.
$n=\dfrac{\sin \dfrac{(A+{{S}_{m}})}{2}}{\sin \dfrac{A}{2}}$
Here, n is refractive index of material,
A is the angle of the prism.
${{S}_{m}}$ is the angle of minimum deviation
Use the condition, refractive index is minimum when angle of prism is \[\text{9}0{}^\circ \]
Refractive index is maximum when the angle of the prism is \[0{}^\circ \].
Complete step by step answer
The prism formula is given by
$n=\dfrac{\sin \dfrac{(A+{{S}_{m}})}{2}}{\sin \dfrac{A}{2}}$
Here n is a refractive index.
We know deviation will be minimum, angle of incidence is equal to angle of prism.
${{S}_{m}}=2i-A$
${{S}_{m}}=\text{2}AA=A$
From prism formula, put the value of minimum deviation,
n = $n=\dfrac{\sin \dfrac{(A+A)}{2}}{\sin \dfrac{A}{2}}=\dfrac{\sin \text{ }A}{\sin \dfrac{A}{2}}$
Use$\left[ \text{sin A=2 sin}\dfrac{A}{2}\text{cos }\dfrac{A}{2} \right]$
The refractive index is given by,
$n=\dfrac{2\operatorname{Sin}\dfrac{A}{2}\operatorname{Cos}\dfrac{A}{2}}{\operatorname{Sin}\dfrac{A}{2}}$
$n=2\operatorname{Cos}\dfrac{A}{2}$
This is the formula for prism,
Now, we have to find a minimum refractive index.
Angle of prism A varies from \[0{}^\circ \]to \[\text{9}0{}^\circ \]
For ${{n}_{\min }}$, minimum value of refractive index is given by
Put \[\text{A}=\text{9}0{}^\circ \]
$n=2\operatorname{Cos}\dfrac{90{}^\circ }{2}$ Use$\left[ \text{Cos 45}{}^\circ =\dfrac{1}{\sqrt{2}} \right]$
= $2\operatorname{Cos}45{}^\circ $
${{n}_{\min }}=2\times \dfrac{1}{\sqrt{2}}\text{ = }\sqrt{2}$
For${{n}_{\max }}$, maximum value of refractive index
A= 0°
\[\text{n}=\text{2 Cos }0{}^\circ =\text{2}\] (1) \[~[\text{Cos }0{}^\circ =\text{ 1}]\]
${{n}_{\max }}=2$
Hence, the value of refractive index varies between 2 and $\sqrt{2}$
Note
When refracting angle is small, the deviation is calculated from,
S =\[\left( n-1 \right)\]A
When refraction angle is bigger for the prism the deviation is calculated from, S = $({{i}_{1}}+{{i}_{2}})-A$where ${{i}_{1}}$and ${{i}_{2}}$are angle of incidence on different faces of prism.
$n=\dfrac{\sin \dfrac{(A+{{S}_{m}})}{2}}{\sin \dfrac{A}{2}}$
Here, n is refractive index of material,
A is the angle of the prism.
${{S}_{m}}$ is the angle of minimum deviation
Use the condition, refractive index is minimum when angle of prism is \[\text{9}0{}^\circ \]
Refractive index is maximum when the angle of the prism is \[0{}^\circ \].
Complete step by step answer
The prism formula is given by
$n=\dfrac{\sin \dfrac{(A+{{S}_{m}})}{2}}{\sin \dfrac{A}{2}}$
Here n is a refractive index.
We know deviation will be minimum, angle of incidence is equal to angle of prism.
${{S}_{m}}=2i-A$
${{S}_{m}}=\text{2}AA=A$
From prism formula, put the value of minimum deviation,
n = $n=\dfrac{\sin \dfrac{(A+A)}{2}}{\sin \dfrac{A}{2}}=\dfrac{\sin \text{ }A}{\sin \dfrac{A}{2}}$
Use$\left[ \text{sin A=2 sin}\dfrac{A}{2}\text{cos }\dfrac{A}{2} \right]$
The refractive index is given by,
$n=\dfrac{2\operatorname{Sin}\dfrac{A}{2}\operatorname{Cos}\dfrac{A}{2}}{\operatorname{Sin}\dfrac{A}{2}}$
$n=2\operatorname{Cos}\dfrac{A}{2}$
This is the formula for prism,
Now, we have to find a minimum refractive index.
Angle of prism A varies from \[0{}^\circ \]to \[\text{9}0{}^\circ \]
For ${{n}_{\min }}$, minimum value of refractive index is given by
Put \[\text{A}=\text{9}0{}^\circ \]
$n=2\operatorname{Cos}\dfrac{90{}^\circ }{2}$ Use$\left[ \text{Cos 45}{}^\circ =\dfrac{1}{\sqrt{2}} \right]$
= $2\operatorname{Cos}45{}^\circ $
${{n}_{\min }}=2\times \dfrac{1}{\sqrt{2}}\text{ = }\sqrt{2}$
For${{n}_{\max }}$, maximum value of refractive index
A= 0°
\[\text{n}=\text{2 Cos }0{}^\circ =\text{2}\] (1) \[~[\text{Cos }0{}^\circ =\text{ 1}]\]
${{n}_{\max }}=2$
Hence, the value of refractive index varies between 2 and $\sqrt{2}$
Note
When refracting angle is small, the deviation is calculated from,
S =\[\left( n-1 \right)\]A
When refraction angle is bigger for the prism the deviation is calculated from, S = $({{i}_{1}}+{{i}_{2}})-A$where ${{i}_{1}}$and ${{i}_{2}}$are angle of incidence on different faces of prism.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE