
For the following system of equations determine the value of k for which the given system of equations has infinitely many solutions.
$
\left( {{\text{k - 3}}} \right){\text{x + 3y = k}} \\
{\text{kx + ky = 12}} \\
$
Answer
623.1k+ views
Hint:- For the system of equations to have infinitely many solutions the ratios of coefficients of x ,y and constant term should be equal.
Given,
$\left( {{\text{k - 3}}} \right){\text{x + 3y = k and kx + ky = 12}}$ .
Let
$
\left( {{\text{k - 3}}} \right){\text{x + 3y = k }} \cdots \left( 1 \right) \\
{\text{kx + ky = 12 }} \cdots \left( 2 \right) \\
$
For a general system of equations of two variables, let the equations be
$
{{\text{a}}_1}{\text{x + }}{{\text{b}}_1}{\text{y = }}{{\text{c}}_1}{\text{ }} \cdots \left( 3 \right) \\
{{\text{a}}_2}{\text{x + }}{{\text{b}}_2}{\text{y = }}{{\text{c}}_2}{\text{ }} \cdots \left( 4 \right) \\
$
The equations will have infinite solution if and only if,
$\dfrac{{{{\text{a}}_1}}}{{{{\text{a}}_2}}} = \dfrac{{{{\text{b}}_1}}}{{{{\text{b}}_2}}} = \dfrac{{{{\text{c}}_1}}}{{{{\text{c}}_2}}}$
On comparing the coefficients of equation (1) and (3) we get,
${{\text{a}}_1}{\text{ = k - 3, }}{{\text{b}}_1}{\text{ = 3 and }}{{\text{c}}_1}{\text{ = k }} \cdots \left( 5 \right)$
On comparing the coefficients of equation (2) and (4) we get,
${{\text{a}}_2}{\text{ = k, }}{{\text{b}}_2}{\text{ = k and }}{{\text{c}}_2}{\text{ = 12 }} \cdots \left( 6 \right)$
Now, dividing the equation (5) and (6), we get
$\dfrac{{{\text{k - 3}}}}{{\text{k}}} = \dfrac{3}{{\text{k}}}{\text{ and }}\dfrac{3}{{\text{k}}} = \dfrac{{\text{k}}}{{12}}$
Solving above equations, we get
$
\left( {{\text{k - 3}}} \right){\text{k = 3k and }}{{\text{k}}^2}{\text{ = 36}} \\
{\text{k - 3 = 3 and k = }}\sqrt {36} \\
{\text{k = 6 }} \\
$
Both the equations will satisfy for k =6. Hence , the required answer is 6.
The equations will be 3x + 3y=6 and 6x + 6y =12.
Note:- The system of equations having infinite solutions is consistent and dependent. Equations of two variables must have the same slope and same y-intercept for having infinite solutions.
Given,
$\left( {{\text{k - 3}}} \right){\text{x + 3y = k and kx + ky = 12}}$ .
Let
$
\left( {{\text{k - 3}}} \right){\text{x + 3y = k }} \cdots \left( 1 \right) \\
{\text{kx + ky = 12 }} \cdots \left( 2 \right) \\
$
For a general system of equations of two variables, let the equations be
$
{{\text{a}}_1}{\text{x + }}{{\text{b}}_1}{\text{y = }}{{\text{c}}_1}{\text{ }} \cdots \left( 3 \right) \\
{{\text{a}}_2}{\text{x + }}{{\text{b}}_2}{\text{y = }}{{\text{c}}_2}{\text{ }} \cdots \left( 4 \right) \\
$
The equations will have infinite solution if and only if,
$\dfrac{{{{\text{a}}_1}}}{{{{\text{a}}_2}}} = \dfrac{{{{\text{b}}_1}}}{{{{\text{b}}_2}}} = \dfrac{{{{\text{c}}_1}}}{{{{\text{c}}_2}}}$
On comparing the coefficients of equation (1) and (3) we get,
${{\text{a}}_1}{\text{ = k - 3, }}{{\text{b}}_1}{\text{ = 3 and }}{{\text{c}}_1}{\text{ = k }} \cdots \left( 5 \right)$
On comparing the coefficients of equation (2) and (4) we get,
${{\text{a}}_2}{\text{ = k, }}{{\text{b}}_2}{\text{ = k and }}{{\text{c}}_2}{\text{ = 12 }} \cdots \left( 6 \right)$
Now, dividing the equation (5) and (6), we get
$\dfrac{{{\text{k - 3}}}}{{\text{k}}} = \dfrac{3}{{\text{k}}}{\text{ and }}\dfrac{3}{{\text{k}}} = \dfrac{{\text{k}}}{{12}}$
Solving above equations, we get
$
\left( {{\text{k - 3}}} \right){\text{k = 3k and }}{{\text{k}}^2}{\text{ = 36}} \\
{\text{k - 3 = 3 and k = }}\sqrt {36} \\
{\text{k = 6 }} \\
$
Both the equations will satisfy for k =6. Hence , the required answer is 6.
The equations will be 3x + 3y=6 and 6x + 6y =12.
Note:- The system of equations having infinite solutions is consistent and dependent. Equations of two variables must have the same slope and same y-intercept for having infinite solutions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

