
For the reaction between ${\rm{KMn}}{{\rm{O}}_{\rm{4}}}$ and ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$, the number of electrons transferred per mole of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$are
(a) one
(b) two
(c) three
(d) four
Answer
473.7k+ views
Hint: We know that a reaction in which there is a change in the oxidation number (increase as well as decrease) of some reacting species involved in the reaction is termed as redox reaction. That means, in a redox reaction both oxidation and reduction takes place.
Complete step by step solution:
We know that manganate (VII) ion, ${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - $ oxidizes hydrogen peroxide gas to oxygen gas. The reaction is done with potassium permanganate (VII) solution and hydrogen peroxide solution acidified with dilute sulphuric acid. Let’s first write the half reactions.
We know that magnate (VII) ions are reduced to manganese ions. So, the reaction is shown as ,
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - \to {\rm{M}}{{\rm{n}}^{2 + }}$
Now, we need to balance the equation.
As there are four oxygen atoms in the reactant side, we have to add four molecules of water to balance the oxygen atoms.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Now, to balance hydrogen atoms, we have to eight protons to the reactant side.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - + 8{{\rm{H}}^ + } \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Now, we have balanced the charge on both sides. Now, at LHS charge is 7 and in RHS charge is +2. So, we have added 5 electrons to the LHS to make it +2.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - + 8{{\rm{H}}^ + } + 5{e^ - } \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$…… (1)
Now, we write the oxidation reaction of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$.
Hydrogen peroxide $\left( {{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}} \right)$ turns to oxygen \[{{\rm{O}}_{\rm{2}}}\].
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}}$
To balance hydrogen atoms in the above reaction we have to add 2 protons to the RHS.
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + 2{{\rm{H}}^ + }$
Now, we have to balance the charge. In LHS, charge is zero and in RHS charge is +2. So, we have to add 2 electrons to RHS.
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + 2{{\rm{H}}^ + } + 2{e^ - }$……. (2)
Now, we have to multiply equation (1) by 2 and equation (2) by 5.
${\rm{2Mn}}{{\rm{O}}_{\rm{4}}}^ - + 16{{\rm{H}}^ + } + 10{e^ - } \to 2{\rm{M}}{{\rm{n}}^{2 + }} + 8{{\rm{H}}_{\rm{2}}}{\rm{O}}$ …… (3)
${\rm{5}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to 5{{\rm{O}}_{\rm{2}}} + 10{{\rm{H}}^ + } + 10{e^ - }$…… (4)
From equation (4), we observe that 5 mole of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$ transfers 10 electrons.
So, one mole of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$ transfers = $\dfrac{{10}}{5} = 2$ electrons.
Therefore, the correct answer is Option A.
Note: Increase of oxidation number indicates oxidation reaction and decrease of oxidation number indicates reduction reaction. Oxidizing agents are those that undergo reduction and reducing agents are those that undergo oxidation.
Complete step by step solution:
We know that manganate (VII) ion, ${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - $ oxidizes hydrogen peroxide gas to oxygen gas. The reaction is done with potassium permanganate (VII) solution and hydrogen peroxide solution acidified with dilute sulphuric acid. Let’s first write the half reactions.
We know that magnate (VII) ions are reduced to manganese ions. So, the reaction is shown as ,
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - \to {\rm{M}}{{\rm{n}}^{2 + }}$
Now, we need to balance the equation.
As there are four oxygen atoms in the reactant side, we have to add four molecules of water to balance the oxygen atoms.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Now, to balance hydrogen atoms, we have to eight protons to the reactant side.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - + 8{{\rm{H}}^ + } \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Now, we have balanced the charge on both sides. Now, at LHS charge is 7 and in RHS charge is +2. So, we have added 5 electrons to the LHS to make it +2.
${\rm{Mn}}{{\rm{O}}_{\rm{4}}}^ - + 8{{\rm{H}}^ + } + 5{e^ - } \to {\rm{M}}{{\rm{n}}^{2 + }} + 4{{\rm{H}}_{\rm{2}}}{\rm{O}}$…… (1)
Now, we write the oxidation reaction of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$.
Hydrogen peroxide $\left( {{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}} \right)$ turns to oxygen \[{{\rm{O}}_{\rm{2}}}\].
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}}$
To balance hydrogen atoms in the above reaction we have to add 2 protons to the RHS.
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + 2{{\rm{H}}^ + }$
Now, we have to balance the charge. In LHS, charge is zero and in RHS charge is +2. So, we have to add 2 electrons to RHS.
${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to {{\rm{O}}_{\rm{2}}} + 2{{\rm{H}}^ + } + 2{e^ - }$……. (2)
Now, we have to multiply equation (1) by 2 and equation (2) by 5.
${\rm{2Mn}}{{\rm{O}}_{\rm{4}}}^ - + 16{{\rm{H}}^ + } + 10{e^ - } \to 2{\rm{M}}{{\rm{n}}^{2 + }} + 8{{\rm{H}}_{\rm{2}}}{\rm{O}}$ …… (3)
${\rm{5}}{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}} \to 5{{\rm{O}}_{\rm{2}}} + 10{{\rm{H}}^ + } + 10{e^ - }$…… (4)
From equation (4), we observe that 5 mole of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$ transfers 10 electrons.
So, one mole of ${{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}$ transfers = $\dfrac{{10}}{5} = 2$ electrons.
Therefore, the correct answer is Option A.
Note: Increase of oxidation number indicates oxidation reaction and decrease of oxidation number indicates reduction reaction. Oxidizing agents are those that undergo reduction and reducing agents are those that undergo oxidation.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
