
For two unimodular complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$, ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$ is
\[\begin{align}
& A.\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
\end{matrix} \right] \\
& B.\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& C.\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
& D.\text{ None of these} \\
\end{align}\]
Answer
562.2k+ views
Hint: In this question, we are given two unimodular complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ and we have to find value of given ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$. We will first suppose these two matrix as variable and find their inverse using ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA$ where $\left| A \right|$ is determinant of A and adjA is adjoint of a. Adjoint of A will be found by taking the transpose of the cofactor matrix. We will use property as $z\overline{z}={{\left| z \right|}^{2}}$ where $\overline{z}$ is conjugate of z. Also cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Complete step by step answer:
Here, we have to find value of ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$.
Since, it is given that, complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ are unimodular, therefore, their modulus is 1, that is $\left| {{z}_{1}} \right|\text{=1 and }\left| {{z}_{2}} \right|=1$.
Now, let us suppose
\[A=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\text{ and }B=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, we have to find ${{A}^{-1}}{{B}^{-1}}$. For finding ${{A}^{-1}}$. Let's first find $\left| A \right|$.
\[\begin{align}
& \left| A \right|=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}+\overline{{{z}_{2}}}{{z}_{2}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$,
Therefore, $\left| A \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$.
So, $\left| A \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Now, let's find adjA.
Adjoint of any matrix is the transpose of the cofactor matrix.
As we know, cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Therefore, $\text{cofactor matrix of }A=\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]$
\[\text{Adjoint of }A={{\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA=\dfrac{1}{2}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 1 \right)\]
For finding ${{B}^{-1}}$. Let us first find $\left| B \right|$.
\[\begin{align}
& \left| B \right|=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right] \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$ therefore, $\left| B \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$ so, $\left| B \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Let's find adjB.
$\text{cofactor matrix of }B=\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]$
\[\text{Adjoint of }B={{\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\]
Hence, \[{{B}^{-1}}=\dfrac{1}{\left| B \right|}adjB=\dfrac{1}{2}\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 2 \right)\]
We want ${{A}^{-1}}{{B}^{-1}}$ therefore, let's multiply (1) and (2) together, we get:
\[\begin{align}
& {{A}^{-1}}{{B}^{-1}}=\dfrac{1}{4}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} & 0 \\
0 & {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{1}^{2}}+{{1}^{2}} & 0 \\
0 & {{1}^{2}}+{{1}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
\end{align}\]
Hence, \[{{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right]\]
So, the correct answer is “Option C”.
Note: Students should carefully calculate determinants of the matrix since small sign mistakes can completely change the answer. Students can get confused between A and B matrices, ${{z}_{1}}\text{ and }{{z}_{2}}$ their conjugate and negative signs. So take care while copying them and solving them. For finding adjoint of the matrix, don’t forget to find transpose.
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$. We will first suppose these two matrix as variable and find their inverse using ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA$ where $\left| A \right|$ is determinant of A and adjA is adjoint of a. Adjoint of A will be found by taking the transpose of the cofactor matrix. We will use property as $z\overline{z}={{\left| z \right|}^{2}}$ where $\overline{z}$ is conjugate of z. Also cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Complete step by step answer:
Here, we have to find value of ${{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}$.
Since, it is given that, complex numbers ${{z}_{1}}\text{ and }{{z}_{2}}$ are unimodular, therefore, their modulus is 1, that is $\left| {{z}_{1}} \right|\text{=1 and }\left| {{z}_{2}} \right|=1$.
Now, let us suppose
\[A=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\text{ and }B=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, we have to find ${{A}^{-1}}{{B}^{-1}}$. For finding ${{A}^{-1}}$. Let's first find $\left| A \right|$.
\[\begin{align}
& \left| A \right|=\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow \overline{{{z}_{1}}}{{z}_{1}}+\overline{{{z}_{2}}}{{z}_{2}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$,
Therefore, $\left| A \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$.
So, $\left| A \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Now, let's find adjA.
Adjoint of any matrix is the transpose of the cofactor matrix.
As we know, cofactor matrix of $2\times 2$ matrix $\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ is given by $\left[ \begin{matrix}
d & -c \\
-b & a \\
\end{matrix} \right]$.
Therefore, $\text{cofactor matrix of }A=\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]$
\[\text{Adjoint of }A={{\left[ \begin{matrix}
{{z}_{1}} & \overline{-{{z}_{2}}} \\
-{{z}_{2}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\]
Hence, \[{{A}^{-1}}=\dfrac{1}{\left| A \right|}adjA=\dfrac{1}{2}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 1 \right)\]
For finding ${{B}^{-1}}$. Let us first find $\left| B \right|$.
\[\begin{align}
& \left| B \right|=\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right] \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}-\left( -{{z}_{2}}\overline{{{z}_{2}}} \right) \\
& \Rightarrow {{z}_{1}}\overline{{{z}_{1}}}+{{z}_{2}}\overline{{{z}_{2}}} \\
\end{align}\]
Since $z\overline{z}={{\left| z \right|}^{2}}$ therefore, $\left| B \right|={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}$.
Now, we know that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1$ so, $\left| B \right|={{\left| 1 \right|}^{2}}+{{\left| 1 \right|}^{2}}=1+1=2$.
Let's find adjB.
$\text{cofactor matrix of }B=\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]$
\[\text{Adjoint of }B={{\left[ \begin{matrix}
\overline{{{z}_{1}}} & \overline{{{z}_{2}}} \\
{{z}_{2}} & {{z}_{1}} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\]
Hence, \[{{B}^{-1}}=\dfrac{1}{\left| B \right|}adjB=\dfrac{1}{2}\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]\cdots \cdots \cdots \cdots \left( 2 \right)\]
We want ${{A}^{-1}}{{B}^{-1}}$ therefore, let's multiply (1) and (2) together, we get:
\[\begin{align}
& {{A}^{-1}}{{B}^{-1}}=\dfrac{1}{4}\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]\left[ \begin{matrix}
\overline{{{z}_{1}}} & {{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} & 0 \\
0 & {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
{{1}^{2}}+{{1}^{2}} & 0 \\
0 & {{1}^{2}}+{{1}^{2}} \\
\end{matrix} \right] \\
& \Rightarrow \dfrac{1}{4}\left[ \begin{matrix}
2 & 0 \\
0 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right] \\
\end{align}\]
Hence, \[{{\left[ \begin{matrix}
\overline{{{z}_{1}}} & -{{z}_{2}} \\
\overline{{{z}_{2}}} & {{z}_{1}} \\
\end{matrix} \right]}^{-1}}{{\left[ \begin{matrix}
{{z}_{1}} & {{z}_{2}} \\
\overline{-{{z}_{2}}} & \overline{{{z}_{1}}} \\
\end{matrix} \right]}^{-1}}=\left[ \begin{matrix}
\dfrac{1}{2} & 0 \\
0 & \dfrac{1}{2} \\
\end{matrix} \right]\]
So, the correct answer is “Option C”.
Note: Students should carefully calculate determinants of the matrix since small sign mistakes can completely change the answer. Students can get confused between A and B matrices, ${{z}_{1}}\text{ and }{{z}_{2}}$ their conjugate and negative signs. So take care while copying them and solving them. For finding adjoint of the matrix, don’t forget to find transpose.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

