Answer
Verified
459.6k+ views
Hint: To solve this question, we will use the concept of a pair of linear equations in two variables. We will use the method of elimination by substitution in this system of equations to find out the values of m. We will also use some inequality rules.
Complete step-by-step answer:
Given that,
$ \Rightarrow 3x + my = m$ …… (i)
$ \Rightarrow 2x - 5y = 20$ …… (ii)
From equation (ii),
$ \Rightarrow 2x = 20 + 5y$
$ \Rightarrow x = \dfrac{{20 + 5y}}{2}$ …… (iii)
Putting the value of x from equation (iii) in equation (i), we will get
$ \Rightarrow 3\left( {\dfrac{{20 + 5y}}{2}} \right) + my = m$
$ \Rightarrow \dfrac{{60 + 15y}}{2} + my = m$
Taking 2 as L.C.M,
$ \Rightarrow \dfrac{{60 + 15y + 2my}}{2} = m$
Now, shifting 2 from L.H.S to R.H.S,
$ \Rightarrow 60 + 15y + 2my = 2m$
$ \Rightarrow 15y + 2my = 2m - 60$
Separating the equation to eliminate y, we will get
$ \Rightarrow y\left( {15 + 2m} \right) = 2m - 60$
$ \Rightarrow y = \dfrac{{2m - 60}}{{15 + 2m}}$ ……. (iv)
Here we get, $x = \dfrac{{20 + 5y}}{2}$ and $y = \dfrac{{2m - 60}}{{15 + 2m}}$
Now, according to the question
$ \Rightarrow x > 0$ …. (v)
$ \Rightarrow y > 0$ ….. (vi)
Putting the value of y in equation (vi), we will get
$ \Rightarrow \dfrac{{2m - 60}}{{15 + 2m}} > 0$
Multiplying and dividing both sides by 15 + 2m,
$ \Rightarrow \dfrac{{\left( {2m - 60} \right)\left( {15 + 2m} \right)}}{{{{\left( {15 + 2m} \right)}^2}}} > 0$
This can be written as:
$ \Rightarrow \left( {2m - 60} \right)\left( {15 + 2m} \right) > 0$
Taking 2 common from both brackets,
$ \Rightarrow 4\left( {m - 30} \right)\left( {\dfrac{{15}}{2} + m} \right) > 0$
From this, we can say that
$ \Rightarrow m - 30 > 0$ or ……. (vii)
$ \Rightarrow \dfrac{{15}}{2} + m > 0$ …… (viii)
Adding 30 both sides in equation (vii),
$ \Rightarrow m - 30 + 30 > 0 + 30$
$ \Rightarrow m > 30$
As we know that when both sides are divided or multiplied by a negative number then the inequality gets reversed.
So, the equation (viii) will become,
$ \Rightarrow m < \dfrac{{ - 15}}{2}$
Hence, the values of m form which it satisfies the given system of equations are $m > 30$ and $m < \dfrac{{ - 15}}{2}$
Note: Whenever we ask such types of questions, we have to remember the substitution method. In this method, one of the variables in terms of another variable from either of the two equations and then this expression is put in another equation to obtain an equation in one variable.
Complete step-by-step answer:
Given that,
$ \Rightarrow 3x + my = m$ …… (i)
$ \Rightarrow 2x - 5y = 20$ …… (ii)
From equation (ii),
$ \Rightarrow 2x = 20 + 5y$
$ \Rightarrow x = \dfrac{{20 + 5y}}{2}$ …… (iii)
Putting the value of x from equation (iii) in equation (i), we will get
$ \Rightarrow 3\left( {\dfrac{{20 + 5y}}{2}} \right) + my = m$
$ \Rightarrow \dfrac{{60 + 15y}}{2} + my = m$
Taking 2 as L.C.M,
$ \Rightarrow \dfrac{{60 + 15y + 2my}}{2} = m$
Now, shifting 2 from L.H.S to R.H.S,
$ \Rightarrow 60 + 15y + 2my = 2m$
$ \Rightarrow 15y + 2my = 2m - 60$
Separating the equation to eliminate y, we will get
$ \Rightarrow y\left( {15 + 2m} \right) = 2m - 60$
$ \Rightarrow y = \dfrac{{2m - 60}}{{15 + 2m}}$ ……. (iv)
Here we get, $x = \dfrac{{20 + 5y}}{2}$ and $y = \dfrac{{2m - 60}}{{15 + 2m}}$
Now, according to the question
$ \Rightarrow x > 0$ …. (v)
$ \Rightarrow y > 0$ ….. (vi)
Putting the value of y in equation (vi), we will get
$ \Rightarrow \dfrac{{2m - 60}}{{15 + 2m}} > 0$
Multiplying and dividing both sides by 15 + 2m,
$ \Rightarrow \dfrac{{\left( {2m - 60} \right)\left( {15 + 2m} \right)}}{{{{\left( {15 + 2m} \right)}^2}}} > 0$
This can be written as:
$ \Rightarrow \left( {2m - 60} \right)\left( {15 + 2m} \right) > 0$
Taking 2 common from both brackets,
$ \Rightarrow 4\left( {m - 30} \right)\left( {\dfrac{{15}}{2} + m} \right) > 0$
From this, we can say that
$ \Rightarrow m - 30 > 0$ or ……. (vii)
$ \Rightarrow \dfrac{{15}}{2} + m > 0$ …… (viii)
Adding 30 both sides in equation (vii),
$ \Rightarrow m - 30 + 30 > 0 + 30$
$ \Rightarrow m > 30$
As we know that when both sides are divided or multiplied by a negative number then the inequality gets reversed.
So, the equation (viii) will become,
$ \Rightarrow m < \dfrac{{ - 15}}{2}$
Hence, the values of m form which it satisfies the given system of equations are $m > 30$ and $m < \dfrac{{ - 15}}{2}$
Note: Whenever we ask such types of questions, we have to remember the substitution method. In this method, one of the variables in terms of another variable from either of the two equations and then this expression is put in another equation to obtain an equation in one variable.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers