Answer
Verified
450.9k+ views
Hint: Calculation of the radius of an atom is the application of Bohr’s model, which is applicable for hydrogen and hydrogen like single electron containing species such as \[\text{L}{{\text{i}}^{2+}}\], \[\text{B}{{\text{e}}^{3+}}\] ion.
Complete Step by step solution:
Radius or orbital (shell) of a single electron containing species is calculated by
\[r\,=\,\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}m{{e}^{2}}}\times \dfrac{1}{Z}\]
In it\[h\],\[\pi \] \[m\]and \[e\] are constant, so after substituting the value we get
\[\text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}\,......(1)\]
Where $\text{n}$ = no of orbit, and Z = atomic number
For hydrogen atom, the value of radius after putting n = 1 and Z = 1 in the equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{1}^{\text{2}}}}{1}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
(A) $H{{e}^{+}}$Ion has only one electron but it has two protons in the nucleus, hence its electron feels three times more attraction from the nucleus in comparison to the hydrogen atom. Thus the radius of the ion for $\text{n}=\,2$ will be
After putting these value $\text{n}=\,2$ and \[\text{Z}\,\text{= 2}\] in equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{2}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,2\,\times 0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
\[\text{r}\,=\,1.05\,{{A}^{\circ }}\]
(B) \[L{{i}^{2+}}\]Ion has only one electron but it has three protons in the nucleus. So radius of\[\text{L}{{\text{i}}^{2+}}\]ion \[n\,=\,2\]and\[\text{Z}\,\text{= 3}\]after putting these values in the equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{3}{{\text{A}}^{\text{o}}} \\
& r\,\,=\,\,0.529\times \,\dfrac{4}{3}{{\text{A}}^{\text{o}}}\,\, \\
\end{align}\]
\[\text{r}\,\,=\,\,0.235\,{{\text{A}}^{\text{o}}}\,\,\]
(C) \[\text{B}{{\text{e}}^{3+}}\]Ion has only one electron but it has four protons in the nucleus. So radius of \[\text{B}{{\text{e}}^{3+}}\]for its second orbital \[n\,=\,2\]and\[\text{Z}\,\text{= 4}\] after putting these values on equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{4}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
So the option (C) will be the correct option.
Note: radius of an atomic shell is directly proportional to the nth number of shell and inversely proportional to the atomic number or number of protons in the atom. So for a single electron species the size of the first shell will be the smallest and size of last shall be highest.
Complete Step by step solution:
Radius or orbital (shell) of a single electron containing species is calculated by
\[r\,=\,\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}m{{e}^{2}}}\times \dfrac{1}{Z}\]
In it\[h\],\[\pi \] \[m\]and \[e\] are constant, so after substituting the value we get
\[\text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}\,......(1)\]
Where $\text{n}$ = no of orbit, and Z = atomic number
For hydrogen atom, the value of radius after putting n = 1 and Z = 1 in the equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{1}^{\text{2}}}}{1}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
(A) $H{{e}^{+}}$Ion has only one electron but it has two protons in the nucleus, hence its electron feels three times more attraction from the nucleus in comparison to the hydrogen atom. Thus the radius of the ion for $\text{n}=\,2$ will be
After putting these value $\text{n}=\,2$ and \[\text{Z}\,\text{= 2}\] in equation (1)
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{2}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,2\,\times 0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
\[\text{r}\,=\,1.05\,{{A}^{\circ }}\]
(B) \[L{{i}^{2+}}\]Ion has only one electron but it has three protons in the nucleus. So radius of\[\text{L}{{\text{i}}^{2+}}\]ion \[n\,=\,2\]and\[\text{Z}\,\text{= 3}\]after putting these values in the equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{3}{{\text{A}}^{\text{o}}} \\
& r\,\,=\,\,0.529\times \,\dfrac{4}{3}{{\text{A}}^{\text{o}}}\,\, \\
\end{align}\]
\[\text{r}\,\,=\,\,0.235\,{{\text{A}}^{\text{o}}}\,\,\]
(C) \[\text{B}{{\text{e}}^{3+}}\]Ion has only one electron but it has four protons in the nucleus. So radius of \[\text{B}{{\text{e}}^{3+}}\]for its second orbital \[n\,=\,2\]and\[\text{Z}\,\text{= 4}\] after putting these values on equation (1) we get
\[\begin{align}
& \text{r}\,\,=\,0.529\times \,\dfrac{{{\text{n}}^{\text{2}}}}{\text{Z}}{{\text{A}}^{\text{o}}}......\left( 1 \right) \\
& \text{r}\,\,=\,0.529\times \,\dfrac{{{2}^{\text{2}}}}{4}{{\text{A}}^{\text{o}}} \\
& \text{r}\,\,=\,\,0.529\,{{\text{A}}^{\text{o}}} \\
\end{align}\]
So the option (C) will be the correct option.
Note: radius of an atomic shell is directly proportional to the nth number of shell and inversely proportional to the atomic number or number of protons in the atom. So for a single electron species the size of the first shell will be the smallest and size of last shall be highest.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE