Answer
Verified
429k+ views
Hint: It is given as \[\text{A}\] is directly proportional to \[\text{B}\]. Then we can write this as \[\text{A }\!\!\alpha\!\!\text{ B}\] and we can equate it by introducing a constant between \[\text{A}\] and \[\text{B}\] as \[\text{A = KB}\] where \[\text{K}\] is constant.
For finding the value of \[\text{K}\] you need the values of \[\text{A}\] and \[\text{B}\] and then you can put it in equation to get the value of \[\text{K}\].
Complete step by step solution:It is given in the question that \[\text{Y}\] is inversely proportional to the square of \[\text{X}\] we can write it as \[\text{Y }\alpha \text{ }\dfrac{1}{{{x}^{2}}}\] and we can introduce constant \[\text{C}\]
\[\therefore \text{Y = }\dfrac{\text{C}}{{{x}^{2}}}\,......\,(1)\]
We have to find a equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
So, the proportional equation becomes
\[50\,=\,\dfrac{\text{C}}{{{\left( 2 \right)}^{2}}}\]
\[\text{C}\,\text{=}\,\text{50}\times {{2}^{2}}\]
\[\text{50}\times 4\]
\[\text{C}\,=\,200\]
Putting the value of \[\text{C}\] in equation \[(1)\] we get,
\[\text{Y}\,=\,\dfrac{200}{{{\text{X}}^{2}}}\], which could be written as \[{{x}^{2}}y\,\,=\,200\]
This is an equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
Additional Information:
When \[y\] is inversely proportional to the square of \[x\]. It means if \[x\] is increased two times then, the value of \[y\] decreases four times.
For example:
If \[x\,=\,2\]
\[y\,=\,\dfrac{\text{C}}{{{x}^{2}}}\,=\,y\,=\,\dfrac{\text{C}}{{{2}^{2}}}\,=\,\dfrac{\text{C}}{4}\]
The graph that represents this equation clearly.
Let us discuss the case where \[x\] is positive, if \[x\] is positive, then
As \[x\to \infty ,\,y\to 0\] and vice versa.
i.e if \[x\] gets larger, \[y\] gets smaller and vice versa.
Sometimes the question comes \[y\] is inversely proportional to \[x\] it can simply be written as \[y\,=\,\dfrac{\text{C}}{x}\,\]
Note:
When putting values of \[y\] and \[x\] in the given equation carefully solve and find the value of the constant you assumed.
It is not necessary to assume constant as \[\text{C}\] you can assume any variable you wish.
The sign \[\alpha \] is used for both inversely proportional and directly proportional questions.
For finding the value of \[\text{K}\] you need the values of \[\text{A}\] and \[\text{B}\] and then you can put it in equation to get the value of \[\text{K}\].
Complete step by step solution:It is given in the question that \[\text{Y}\] is inversely proportional to the square of \[\text{X}\] we can write it as \[\text{Y }\alpha \text{ }\dfrac{1}{{{x}^{2}}}\] and we can introduce constant \[\text{C}\]
\[\therefore \text{Y = }\dfrac{\text{C}}{{{x}^{2}}}\,......\,(1)\]
We have to find a equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
So, the proportional equation becomes
\[50\,=\,\dfrac{\text{C}}{{{\left( 2 \right)}^{2}}}\]
\[\text{C}\,\text{=}\,\text{50}\times {{2}^{2}}\]
\[\text{50}\times 4\]
\[\text{C}\,=\,200\]
Putting the value of \[\text{C}\] in equation \[(1)\] we get,
\[\text{Y}\,=\,\dfrac{200}{{{\text{X}}^{2}}}\], which could be written as \[{{x}^{2}}y\,\,=\,200\]
This is an equation connecting \[\text{Y}\] and \[\text{X}\] when \[\text{Y = 50}\] and \[\text{X = 2}\]
Additional Information:
When \[y\] is inversely proportional to the square of \[x\]. It means if \[x\] is increased two times then, the value of \[y\] decreases four times.
For example:
If \[x\,=\,2\]
\[y\,=\,\dfrac{\text{C}}{{{x}^{2}}}\,=\,y\,=\,\dfrac{\text{C}}{{{2}^{2}}}\,=\,\dfrac{\text{C}}{4}\]
The graph that represents this equation clearly.
Let us discuss the case where \[x\] is positive, if \[x\] is positive, then
As \[x\to \infty ,\,y\to 0\] and vice versa.
i.e if \[x\] gets larger, \[y\] gets smaller and vice versa.
Sometimes the question comes \[y\] is inversely proportional to \[x\] it can simply be written as \[y\,=\,\dfrac{\text{C}}{x}\,\]
Note:
When putting values of \[y\] and \[x\] in the given equation carefully solve and find the value of the constant you assumed.
It is not necessary to assume constant as \[\text{C}\] you can assume any variable you wish.
The sign \[\alpha \] is used for both inversely proportional and directly proportional questions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers