Answer
Verified
430.5k+ views
Hint: As the issue that particles are stationary is given, then zero will be the result of the forces. We can find the value of force from the relation of the resulting forces. Now, we will use Newton's law of motion equation, which is given below, to calculate the acceleration of the particle.
Formula used:
The equation of Newton's second law of motion is given below
$F=m a$
$\Rightarrow a=\dfrac{F}{m}$
Here, $F$ is the force acting on the particle, $m$ is the mass of the particle and $a$ is the acceleration of the particle.
Complete answer:
Consider a particle of mass $m$ on which three forces $F_{1}, F_{2}$ and $F_{3}$ are acting. Now, when the particle remains
stationary, then the resultant of the three forces will be zero and is given below
$F_{1}+F_{2}+F_{3}=0$
$\Rightarrow F_{1}=-\left(F_{2}+F_{3}\right)$
Therefore, from the above relation, we can say that the magnitude of force $F_{1}$ is equal to the magnitude of the sum of
forces $F_{2}$ and $F_{3}$ i.e. $F_{2}+F_{3},$ but the direction of these forces $F_{2}+F_{3}$ will be opposite to force $F_{1} .$ Now, consider
that the force $F_{1}$ is now removed from the particle of mass $m$, therefore, the magnitude of the force of particle acting
on the mass $m$ will be
$\Rightarrow$ magnitude of $\left(F_{2}+F_{3}\right)$
$\Rightarrow-$ magnitude of $F_{1}$
Now, according to Newton's second law of motion, the acceleration of the particle can be calculated as shown below
$F=m a$
$\Rightarrow a=\dfrac{F}{m}$
Therefore, the acceleration of particle in case of magnitude of force when $F_{1}$ is removed is given below
$a=\dfrac{F_{2}+F_{3}}{m}$
$\therefore a=\dfrac{{{F}_{1}}}{m}$
Therefore, the magnitude of acceleration of the particle is $-\dfrac{F_{1}}{m},$ but the direction of acceleration is opposite to the force $F_{1}$.
Correct option is (A).
Note:
Here, we've got the negative value of acceleration. When the moving object slows down, the acceleration of the particle will be negative. We can also say that when the particle's speed decreases, the acceleration of the particle will be negative.
Formula used:
The equation of Newton's second law of motion is given below
$F=m a$
$\Rightarrow a=\dfrac{F}{m}$
Here, $F$ is the force acting on the particle, $m$ is the mass of the particle and $a$ is the acceleration of the particle.
Complete answer:
Consider a particle of mass $m$ on which three forces $F_{1}, F_{2}$ and $F_{3}$ are acting. Now, when the particle remains
stationary, then the resultant of the three forces will be zero and is given below
$F_{1}+F_{2}+F_{3}=0$
$\Rightarrow F_{1}=-\left(F_{2}+F_{3}\right)$
Therefore, from the above relation, we can say that the magnitude of force $F_{1}$ is equal to the magnitude of the sum of
forces $F_{2}$ and $F_{3}$ i.e. $F_{2}+F_{3},$ but the direction of these forces $F_{2}+F_{3}$ will be opposite to force $F_{1} .$ Now, consider
that the force $F_{1}$ is now removed from the particle of mass $m$, therefore, the magnitude of the force of particle acting
on the mass $m$ will be
$\Rightarrow$ magnitude of $\left(F_{2}+F_{3}\right)$
$\Rightarrow-$ magnitude of $F_{1}$
Now, according to Newton's second law of motion, the acceleration of the particle can be calculated as shown below
$F=m a$
$\Rightarrow a=\dfrac{F}{m}$
Therefore, the acceleration of particle in case of magnitude of force when $F_{1}$ is removed is given below
$a=\dfrac{F_{2}+F_{3}}{m}$
$\therefore a=\dfrac{{{F}_{1}}}{m}$
Therefore, the magnitude of acceleration of the particle is $-\dfrac{F_{1}}{m},$ but the direction of acceleration is opposite to the force $F_{1}$.
Correct option is (A).
Note:
Here, we've got the negative value of acceleration. When the moving object slows down, the acceleration of the particle will be negative. We can also say that when the particle's speed decreases, the acceleration of the particle will be negative.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE