
Form a quadratic polynomial whose zeroes are 3 and -1.
Answer
592.5k+ views
Hint:Here first we will assume the given zeros to be \[\alpha \] and \[\beta \] then we will find the sum and product of the zeroes and substitute the respective values to get the desired quadratic equation.
Formula used:For a standard quadratic equation \[a{x^2} + bx + c = 0\] and if \[\alpha \] and \[\beta \] are the roots/zeros of the equation then
The sum of the zeroes is given by:-
\[\alpha + \beta = \dfrac{{ - b}}{a}\]
The product of the zeroes is given by:-
\[\alpha \beta = \dfrac{c}{a}\]
Complete step-by-step answer:
The given zeros are:-
3 and -1
Let \[\alpha = 3\] and \[\beta = - 1\]
Now since we know that for standard quadratic equation \[a{x^2} + bx + c = 0\] and if \[\alpha \] and \[\beta \] are the roots/zeroes of the equation then
The sum of the zeroes is given by:-
\[\alpha + \beta = \dfrac{{ - b}}{a}\]
Hence putting in the known values we get:-
\[3 - 1 = \dfrac{{ - b}}{a}\]
Solving it further we get:-
\[\dfrac{2}{1} = \dfrac{{ - b}}{a}\]
Comparing the values we get:-
\[
- b = 2 \\
\Rightarrow b = - 2 \\
\]
And, \[a = 1\]
Now we also know that the product of the zeroes is given by:-
\[\alpha \beta = \dfrac{c}{a}\]
Now putting in the known values we get:-
\[3\left( { - 1} \right) = \dfrac{c}{a}\]
Simplifying it further we get:-
\[\dfrac{{ - 3}}{1} = \dfrac{c}{a}\]
Comparing the values we get:-
\[c = - 3\] and \[a = 1\]
Putting the values of a, b and c in the standard quadratic equation we get:-
The standard quadratic equation is given by:
\[a{x^2} + bx + c = 0\]
Putting in the values of a, b, c we get:-
\[\left( 1 \right){x^2} + \left( { - 2} \right)x + \left( { - 3} \right) = 0\]
Simplifying it further we get:-
\[{x^2} - 2x - 3 = 0\]
Hence the quadratic equation is:
\[{x^2} - 2x - 3 = 0\]
The quadratic polynomial is:
\[{x^2} - 2x - 3\].
Note:The quadratic polynomial can also be written directly by using the sum and product of zeroes as:
\[p\left( x \right) = {x^2} - \left( {{\text{sum of zeroes}}} \right)x + \left( {{\text{product of zeroes}}} \right)\].
Formula used:For a standard quadratic equation \[a{x^2} + bx + c = 0\] and if \[\alpha \] and \[\beta \] are the roots/zeros of the equation then
The sum of the zeroes is given by:-
\[\alpha + \beta = \dfrac{{ - b}}{a}\]
The product of the zeroes is given by:-
\[\alpha \beta = \dfrac{c}{a}\]
Complete step-by-step answer:
The given zeros are:-
3 and -1
Let \[\alpha = 3\] and \[\beta = - 1\]
Now since we know that for standard quadratic equation \[a{x^2} + bx + c = 0\] and if \[\alpha \] and \[\beta \] are the roots/zeroes of the equation then
The sum of the zeroes is given by:-
\[\alpha + \beta = \dfrac{{ - b}}{a}\]
Hence putting in the known values we get:-
\[3 - 1 = \dfrac{{ - b}}{a}\]
Solving it further we get:-
\[\dfrac{2}{1} = \dfrac{{ - b}}{a}\]
Comparing the values we get:-
\[
- b = 2 \\
\Rightarrow b = - 2 \\
\]
And, \[a = 1\]
Now we also know that the product of the zeroes is given by:-
\[\alpha \beta = \dfrac{c}{a}\]
Now putting in the known values we get:-
\[3\left( { - 1} \right) = \dfrac{c}{a}\]
Simplifying it further we get:-
\[\dfrac{{ - 3}}{1} = \dfrac{c}{a}\]
Comparing the values we get:-
\[c = - 3\] and \[a = 1\]
Putting the values of a, b and c in the standard quadratic equation we get:-
The standard quadratic equation is given by:
\[a{x^2} + bx + c = 0\]
Putting in the values of a, b, c we get:-
\[\left( 1 \right){x^2} + \left( { - 2} \right)x + \left( { - 3} \right) = 0\]
Simplifying it further we get:-
\[{x^2} - 2x - 3 = 0\]
Hence the quadratic equation is:
\[{x^2} - 2x - 3 = 0\]
The quadratic polynomial is:
\[{x^2} - 2x - 3\].
Note:The quadratic polynomial can also be written directly by using the sum and product of zeroes as:
\[p\left( x \right) = {x^2} - \left( {{\text{sum of zeroes}}} \right)x + \left( {{\text{product of zeroes}}} \right)\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

