
What is formula of
\[2\sin A\cos B\]
\[2\cos A\sin B\]
\[2\sin A\sin B\]
\[2\cos A\cos B\]
Answer
477.9k+ views
Hint: In the above given question, we are given four trigonometric expressions of the two combined trigonometric functions of the sine and cosine functions respectively. We have to determine the suitable formula which can be used for each of the four given trigonometric expressions. In order to approach the solution, we have to recall the formulae of the sum and difference of two angles for the sine and cosine functions respectively.
Complete answer:
Since we know that the value of sine and cosine functions for the sum and difference of two angles \[A\] and \[B\] is given by the four formulae written below.
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\cos \left( {A + B} \right) = \sin A\sin B - \cos A\cos B\]
\[\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B\]
Now we can obtain the values of the four above given trigonometric expressions by using these four above written formulae.
Now, adding the formula 1 and 2 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B + \sin A\cos B - \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \sin A\cos B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\]
Now, subtracting the formula 2 from 1 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B - \sin A\cos B + \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \cos A\sin B + \cos A\sin B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\cos A\sin B\]
Now, adding the formula 3 and 4 gives us,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B - \cos A\cos B + \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B + \sin A\sin B\]
Hence,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = 2\sin A\sin B\]
Now, subtracting the formula 3 from 4 gives us,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \sin A\sin B + \cos A\cos B - \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \cos A\cos B + \cos A\cos B\]
Hence,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\cos A\cos B\]
These are the required values of the four above given trigonometric expressions.
Therefore the formula of the four above given trigonometric expressions are,
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
\[2\sin A\sin B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\]
\[2\cos A\cos B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
Note:
In order to remember these formulae, you must remember the four fundamental formulae for the sine and cosine functions of the sum and difference of two different angles respectively.
For the convenience to remember these four formulae, always keep in mind that for a sine function the terms are products of both sine and cosine terms and the plus or minus sign is unchanged. Whereas for a cosine function the terms are products of only like terms i.e. either only sine or cosine terms and the plus or minus sign is reversed.
Complete answer:
Since we know that the value of sine and cosine functions for the sum and difference of two angles \[A\] and \[B\] is given by the four formulae written below.
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\cos \left( {A + B} \right) = \sin A\sin B - \cos A\cos B\]
\[\cos \left( {A - B} \right) = \sin A\sin B + \cos A\cos B\]
Now we can obtain the values of the four above given trigonometric expressions by using these four above written formulae.
Now, adding the formula 1 and 2 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B + \sin A\cos B - \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = \sin A\cos B + \sin A\cos B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\]
Now, subtracting the formula 2 from 1 gives us,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \sin A\cos B + \cos A\sin B - \sin A\cos B + \cos A\sin B\]
That is,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = \cos A\sin B + \cos A\sin B\]
Hence,
\[ \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\cos A\sin B\]
Now, adding the formula 3 and 4 gives us,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B - \cos A\cos B + \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = \sin A\sin B + \sin A\sin B\]
Hence,
\[ \Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = 2\sin A\sin B\]
Now, subtracting the formula 3 from 4 gives us,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \sin A\sin B + \cos A\cos B - \sin A\sin B + \cos A\cos B\]
That is,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = \cos A\cos B + \cos A\cos B\]
Hence,
\[ \Rightarrow \cos \left( {A - B} \right) - \cos \left( {A + B} \right) = 2\cos A\cos B\]
These are the required values of the four above given trigonometric expressions.
Therefore the formula of the four above given trigonometric expressions are,
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]
\[2\sin A\sin B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\]
\[2\cos A\cos B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)\]
Note:
In order to remember these formulae, you must remember the four fundamental formulae for the sine and cosine functions of the sum and difference of two different angles respectively.
For the convenience to remember these four formulae, always keep in mind that for a sine function the terms are products of both sine and cosine terms and the plus or minus sign is unchanged. Whereas for a cosine function the terms are products of only like terms i.e. either only sine or cosine terms and the plus or minus sign is reversed.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

