
Four solid spheres each of diameter and mass 0.5kg are placed with their centres at the corners of a square of side 4cm. The moment of inertia of the system about the diagonal of the square is then N is?
Answer
513.6k+ views
Hint: The moment of inertia of a system of solid bodies about any axis is the sum of moments of inertia of individual bodies about that axis. The moment of inertia of a sphere of radius R about the centre of mass is
Complete Step by Step answer:
We know the moment of inertia of a body is given as
Now here we have 4 individual groups of masses. We know the moment of inertia of each of them individually but we are asked the combined moment of inertia.
we can split the summation in eqn(1) as
So we see that the total moment of inertia is the sum of individual moments of inertia : , , , and ,
Here, we have 4 spheres placed at the corners of a square as shown in the diagram. Since the square is rotating about the diagonal, two of the spheres will be rotating along an axis passing through their centre of mass, but two of them are away from the axis and would rotate in circles.
Their distances from the axis is :
Now, we know the moment of inertia of a sphere about an axis through the centre is :
But for a sphere rotating at a distance away from the axis, the moment of inertia has to be found using the parallel axis theorem. According to this theorem, the moment of inertia of a body along any axis is the sum of its moment of inertia about a parallel axis passing through its centre of mass and the product of mass and square of distance from the axis.
Now, we can find the moment of inertia of spheres A and B in the diagram as:
Let's substitute the values given in the question into our equation
Similarly, for the masses C and D,
since we now know , we can substitute it in
Now net moment of inertia is
Converting it to gives :
Comparing this with gives . This is the required answer.
Note: Parallel axis theorem can only be applied if the moment of inertia about the centre of mass is known. If the moment of inertia about some other axis is given, we will first have to find the moment of inertia about the centre of mass and then use it to find the unknown moment of inertia.
Complete Step by Step answer:
We know the moment of inertia of a body is given as
Now here we have 4 individual groups of masses. We know the moment of inertia of each of them individually but we are asked the combined moment of inertia.
we can split the summation in eqn(1) as
So we see that the total moment of inertia
Here, we have 4 spheres placed at the corners of a square as shown in the diagram. Since the square is rotating about the diagonal, two of the spheres will be rotating along an axis passing through their centre of mass, but two of them are away from the axis and would rotate in circles.
Their distances from the axis is :
Now, we know the moment of inertia of a sphere about an axis through the centre is :
But for a sphere rotating at a distance

Now, we can find the moment of inertia of spheres A and B in the diagram as:
Let's substitute the values given in the question into our equation
Similarly, for the masses C and D,
since we now know
Now net moment of inertia is
Converting it to
Comparing this with
Note: Parallel axis theorem can only be applied if the moment of inertia about the centre of mass is known. If the moment of inertia about some other axis is given, we will first have to find the moment of inertia about the centre of mass and then use it to find the unknown moment of inertia.
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹34,850 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
