Answer
Verified
497.4k+ views
Hint- In this question we have to find the probability of a smoker, if a male is first selected. So, we will be using the formula for conditional probability, that is $P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}$. This property will help us simplify things up and will eventually help us reach the answer.
Complete step-by-step answer:
In the question, we have been given that, the probability of selecting a male or smoker is $\dfrac{7}{{10}}$, a male smoker is $\dfrac{2}{5}$ and a male, if a smoker is already selected, is $\dfrac{2}{3}$.
So, let the event of selecting a male be A and the event of selecting a smoker be B.
Then, we will have
The probability of selecting a male or smoker = $P\left( {A \cup B} \right)$ = $\dfrac{7}{{10}}$………. Equation (1)
The probability of selecting a male smoker = $P\left( {A \cap B} \right)$ = $\dfrac{2}{5}$…………….. Equation (2)
The probability of selecting a male, if a smoker is already selected = $P\left( {\frac{A}{B}} \right)$ = $\dfrac{2}{3}$……….. Equation (
And we have to find the probability of selecting a smoker, if a male is first selected = $P\left( {\dfrac{B}{A}} \right)$.
As we know that formula for conditional probability is: $P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}$
So, $P\left( B \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( {\dfrac{A}{B}} \right)}}$
$ \Rightarrow P\left( B \right) = \dfrac{2}{5} \times \dfrac{3}{2}$
$ \Rightarrow P\left( B \right) = \dfrac{3}{5}$
Now, using sets we know that $P\left( A \right) = P\left( {A \cup B} \right) + P\left( {A \cap B} \right) - P\left( B \right)$
So, $P\left( A \right) = \dfrac{7}{{10}} + \dfrac{2}{5} - \dfrac{3}{5}$
$ \Rightarrow P\left( A \right) = \dfrac{{7 + 4 - 6}}{{10}} = \dfrac{1}{2}$
Now, we will find the probability of selecting a smoker, if a male is first selected = $P\left( {\dfrac{B}{A}} \right)$.
Using conditional probability, we get
$P\left( {\dfrac{B}{A}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}$
$ \Rightarrow P\left( {\dfrac{B}{A}} \right) = \dfrac{2}{5} \times \dfrac{2}{1} = \dfrac{4}{5}$
Hence, the option C is correct.
Note- Whenever we face such types of problems the key point to remember is that we need to have a good grasp over probability, conditional probability and related concepts. The conditional probability has been discussed above. This formula helps in the simplification and getting on the right track to reach the answer.
Complete step-by-step answer:
In the question, we have been given that, the probability of selecting a male or smoker is $\dfrac{7}{{10}}$, a male smoker is $\dfrac{2}{5}$ and a male, if a smoker is already selected, is $\dfrac{2}{3}$.
So, let the event of selecting a male be A and the event of selecting a smoker be B.
Then, we will have
The probability of selecting a male or smoker = $P\left( {A \cup B} \right)$ = $\dfrac{7}{{10}}$………. Equation (1)
The probability of selecting a male smoker = $P\left( {A \cap B} \right)$ = $\dfrac{2}{5}$…………….. Equation (2)
The probability of selecting a male, if a smoker is already selected = $P\left( {\frac{A}{B}} \right)$ = $\dfrac{2}{3}$……….. Equation (
And we have to find the probability of selecting a smoker, if a male is first selected = $P\left( {\dfrac{B}{A}} \right)$.
As we know that formula for conditional probability is: $P\left( {\dfrac{A}{B}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}$
So, $P\left( B \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( {\dfrac{A}{B}} \right)}}$
$ \Rightarrow P\left( B \right) = \dfrac{2}{5} \times \dfrac{3}{2}$
$ \Rightarrow P\left( B \right) = \dfrac{3}{5}$
Now, using sets we know that $P\left( A \right) = P\left( {A \cup B} \right) + P\left( {A \cap B} \right) - P\left( B \right)$
So, $P\left( A \right) = \dfrac{7}{{10}} + \dfrac{2}{5} - \dfrac{3}{5}$
$ \Rightarrow P\left( A \right) = \dfrac{{7 + 4 - 6}}{{10}} = \dfrac{1}{2}$
Now, we will find the probability of selecting a smoker, if a male is first selected = $P\left( {\dfrac{B}{A}} \right)$.
Using conditional probability, we get
$P\left( {\dfrac{B}{A}} \right) = \dfrac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}$
$ \Rightarrow P\left( {\dfrac{B}{A}} \right) = \dfrac{2}{5} \times \dfrac{2}{1} = \dfrac{4}{5}$
Hence, the option C is correct.
Note- Whenever we face such types of problems the key point to remember is that we need to have a good grasp over probability, conditional probability and related concepts. The conditional probability has been discussed above. This formula helps in the simplification and getting on the right track to reach the answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE