
What is the fundamental period of $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $ ?
A. $ \dfrac{\pi }{2} $
B. $ \pi $
C. $ 2\pi $
D. $ 3\pi $
Answer
503.7k+ views
Hint: The fundamental period of a function is the minimum time period after which a function repeats its value. So clearly, in this question we need to find the minimum time period after which $ f\left( x \right) $ will repeat its value. To find the fundamental period of $ f\left( x \right) $ you must know that the period of $ \sin x $ and $ \cos x $ is $ 2\pi $ .
Complete step-by-step answer:
Given function: $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
In the given function Putting $ x \to \pi + x $ , we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin \left( {\pi + x} \right) + \sin 3\left( {\pi + x} \right)}}{{\cos \left( {\pi + x} \right) + \cos 3\left( {\pi + x} \right)}} $
We know that $ \sin (\pi + x) = - \sin (x) $ and $ \cos (\pi + x) = - \cos x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x + \sin \left( {3\pi + 3x} \right)}}{{ - \cos x + \cos \left( {3\pi + 3x} \right)}} $
We also know that $ \sin (3\pi + 3x) = - \sin (3x) $ and $ \cos (3\pi + 3x) = - \cos 3x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x - \sin 3x}}{{ - \cos x - \cos 3x}} $
Multiplying numerator and denominator by (-1), we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
The obtained function in the right hand side is equal to $ f(x) $ , which means $ f(x) $ repeats its value after every $ \pi $ interval. Hence, $ \pi $ will be the fundamental period of a given function.
So, the correct answer is “ $ \pi $ ”.
Note: : The period of addition of two periodic functions is the L.C.M. of periods of those two functions.
Alternatively, in these types of questions we can also use the hit and trial method by putting given options. After putting which option the obtained function is equal to the original function, that would be the fundamental period of the function.
Complete step-by-step answer:
Given function: $ f\left( x \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
In the given function Putting $ x \to \pi + x $ , we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin \left( {\pi + x} \right) + \sin 3\left( {\pi + x} \right)}}{{\cos \left( {\pi + x} \right) + \cos 3\left( {\pi + x} \right)}} $
We know that $ \sin (\pi + x) = - \sin (x) $ and $ \cos (\pi + x) = - \cos x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x + \sin \left( {3\pi + 3x} \right)}}{{ - \cos x + \cos \left( {3\pi + 3x} \right)}} $
We also know that $ \sin (3\pi + 3x) = - \sin (3x) $ and $ \cos (3\pi + 3x) = - \cos 3x $ . Putting these values, we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{ - \sin x - \sin 3x}}{{ - \cos x - \cos 3x}} $
Multiplying numerator and denominator by (-1), we get
$ \Rightarrow f\left( {\pi + x} \right) = \dfrac{{\sin x + \sin 3x}}{{\cos x + \cos 3x}} $
The obtained function in the right hand side is equal to $ f(x) $ , which means $ f(x) $ repeats its value after every $ \pi $ interval. Hence, $ \pi $ will be the fundamental period of a given function.
So, the correct answer is “ $ \pi $ ”.
Note: : The period of addition of two periodic functions is the L.C.M. of periods of those two functions.
Alternatively, in these types of questions we can also use the hit and trial method by putting given options. After putting which option the obtained function is equal to the original function, that would be the fundamental period of the function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

