Answer
Verified
395.4k+ views
Hint: As we know that bond order is the difference of number of bonding electrons and antibonding electrons which is divided by two. The distance between two nuclei of a molecule is termed as internuclear distance which is inversely proportional to bond order. So here we have to give an example of an ion with minimum internuclear distance.
Formula used:
We will use the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Complete answer:
-Let us first understand the concept of bond order and internuclear distance followed by giving an example of ion with minimum internuclear distance:-
-Bond order can be defined as the number of bonds or electron pairs between two atoms and it is the difference between the number of bonding electrons and antibonding electrons which is divided by two. Bond order can be calculated by using the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
-The number of bonding electrons and antibonding electrons can be counted by writing down the molecular orbital configuration according to their increasing order of energy shown as follows:-
$\sigma 1s,{{\sigma }^{*}}1s,\sigma 2s,{{\sigma }^{*}}2s,\sigma 2{{p}_{z}},\pi 2{{p}_{x}}=\pi 2{{p}_{y}},{{\pi }^{*}}2{{p}_{x}}={{\pi }^{*}}2{{p}_{y}},{{\sigma }^{*}}2{{p}_{z}}$ and so on.
Here molecular orbitals with asterisk $(*)$ are anti bonding molecular orbital, so its electrons will be counted as antibonding electrons and rest as bonding electrons.
-Internuclear distance is the distance between two nuclei of a molecule and it is inversely proportional to bond order. This means greater the bond order, less will be the internuclear distance due to more number of bonds or electron pairs between the two nuclei of a molecule.
-An example of ion with minimum internuclear distance is as follows:-
Let's take the case of the oxygen molecule. The total electrons in ${{O}_{2}}$ is 16. So the molecular orbital configuration of oxygen molecule and its ions are shown below:-
i) ${{O}_{2}}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 6
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-6)$ = 2
ii)${{O}_{2}}^{-}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{2}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 7
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-7)$ = 1.5
iii)${{O}_{2}}^{+}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 5
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-5)$ = 2.5
-Since the bond order of ${{O}_{2}}^{+}$ is the highest, therefore its internuclear distance will be minimum.
Note:
-Remember that bond order is always positive and can be an integer or fraction.
-The molecule whose bond order is calculated to be zero does not exist because there is no electron pair in the molecule.
Formula used:
We will use the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Complete answer:
-Let us first understand the concept of bond order and internuclear distance followed by giving an example of ion with minimum internuclear distance:-
-Bond order can be defined as the number of bonds or electron pairs between two atoms and it is the difference between the number of bonding electrons and antibonding electrons which is divided by two. Bond order can be calculated by using the following formula:-
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
-The number of bonding electrons and antibonding electrons can be counted by writing down the molecular orbital configuration according to their increasing order of energy shown as follows:-
$\sigma 1s,{{\sigma }^{*}}1s,\sigma 2s,{{\sigma }^{*}}2s,\sigma 2{{p}_{z}},\pi 2{{p}_{x}}=\pi 2{{p}_{y}},{{\pi }^{*}}2{{p}_{x}}={{\pi }^{*}}2{{p}_{y}},{{\sigma }^{*}}2{{p}_{z}}$ and so on.
Here molecular orbitals with asterisk $(*)$ are anti bonding molecular orbital, so its electrons will be counted as antibonding electrons and rest as bonding electrons.
-Internuclear distance is the distance between two nuclei of a molecule and it is inversely proportional to bond order. This means greater the bond order, less will be the internuclear distance due to more number of bonds or electron pairs between the two nuclei of a molecule.
-An example of ion with minimum internuclear distance is as follows:-
Let's take the case of the oxygen molecule. The total electrons in ${{O}_{2}}$ is 16. So the molecular orbital configuration of oxygen molecule and its ions are shown below:-
i) ${{O}_{2}}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 6
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-6)$ = 2
ii)${{O}_{2}}^{-}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{2}}{{({{\pi }^{*}}2{{p}_{y}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 7
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-7)$ = 1.5
iii)${{O}_{2}}^{+}$ = ${{(\sigma 1s)}^{2}}{{({{\sigma }^{*}}1s)}^{2}}{{(\sigma 2s)}^{2}}{{({{\sigma }^{*}}2s)}^{2}}{{(\sigma 2{{p}_{z}})}^{2}}{{(\pi 2{{p}_{x}})}^{2}}{{(\pi 2{{p}_{y}})}^{2}}{{({{\pi }^{*}}2{{p}_{x}})}^{1}}$
Number of bonding electrons= 10
Number of bonding electrons= 5
Bond order = $\dfrac{1}{2}\text{(Bonding electrons}-\text{Anti bonding electrons)}$
Bond order = $\dfrac{1}{2}(10-5)$ = 2.5
-Since the bond order of ${{O}_{2}}^{+}$ is the highest, therefore its internuclear distance will be minimum.
Note:
-Remember that bond order is always positive and can be an integer or fraction.
-The molecule whose bond order is calculated to be zero does not exist because there is no electron pair in the molecule.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE