Answer
Verified
429k+ views
Hint:
Here, we will substitute the values of the given variable in the given equation. We will then simplify it using the exponent rule. We will then use the basic mathematical operation to get the simplified value of \[R\]. Then we will write the answer to an appropriate degree of accuracy by observing the position of the decimal point in the question. The appropriate degree of accuracy is a measure of how close and correct a stated value is to the actual, real value being described.
Complete step by step solution:
It is given that \[R = \dfrac{{{x^2}}}{y}\], where, \[x = 3.8 \times {10^5}\] and \[y = 5.9 \times {10^4}\]
Substituting these values in \[R\], we get,
\[R = \dfrac{{{{\left( {3.8 \times {{10}^5}} \right)}^2}}}{{5.9 \times {{10}^4}}}\]
Using the identity \[{\left( {a \times b} \right)^m} = {a^m} \times {b^m}\] and \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\], we get,
\[ \Rightarrow R = \dfrac{{{{\left( {3.8} \right)}^2} \times {{10}^{5 \times 2}}}}{{5.9 \times {{10}^4}}} = \dfrac{{14.44 \times {{10}^{10}}}}{{5.9 \times {{10}^4}}}\]
Now, using the identity \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\] and dividing \[14.44\] by \[5.9\], we get,
\[ \Rightarrow R = 2.447 \times {10^{10 - 4}} = 2.447 \times {10^6}\]
Now, we can see that the decimal values given in the question in \[x\] and \[y\] are to 1 decimal place, thus, we will give our answer to an appropriate degree of accuracy to 1 decimal place only.
Thus, we get,
\[R = 2.447 \times {10^6} \approx 2.4 \times {10^6}\]
Hence, the value of \[R\] giving an answer in standard form to an appropriate degree of accuracy is \[2.4 \times {10^6}\].
Thus, this is the required answer.
Note:
Accuracy may be affected by rounding, the use of significant figures or ranges in measurement. In maths “to an appropriate degree of accuracy” means that the question wants us to present our answer in the same form as the least accurate measure in the question. Also, we should know that the accuracy of a measurement or approximation is the degree of closeness to the exact value whereas the error is the difference between the approximation and the exact value. Hence, approximation and error are complete different terms.
Here, we will substitute the values of the given variable in the given equation. We will then simplify it using the exponent rule. We will then use the basic mathematical operation to get the simplified value of \[R\]. Then we will write the answer to an appropriate degree of accuracy by observing the position of the decimal point in the question. The appropriate degree of accuracy is a measure of how close and correct a stated value is to the actual, real value being described.
Complete step by step solution:
It is given that \[R = \dfrac{{{x^2}}}{y}\], where, \[x = 3.8 \times {10^5}\] and \[y = 5.9 \times {10^4}\]
Substituting these values in \[R\], we get,
\[R = \dfrac{{{{\left( {3.8 \times {{10}^5}} \right)}^2}}}{{5.9 \times {{10}^4}}}\]
Using the identity \[{\left( {a \times b} \right)^m} = {a^m} \times {b^m}\] and \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\], we get,
\[ \Rightarrow R = \dfrac{{{{\left( {3.8} \right)}^2} \times {{10}^{5 \times 2}}}}{{5.9 \times {{10}^4}}} = \dfrac{{14.44 \times {{10}^{10}}}}{{5.9 \times {{10}^4}}}\]
Now, using the identity \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\] and dividing \[14.44\] by \[5.9\], we get,
\[ \Rightarrow R = 2.447 \times {10^{10 - 4}} = 2.447 \times {10^6}\]
Now, we can see that the decimal values given in the question in \[x\] and \[y\] are to 1 decimal place, thus, we will give our answer to an appropriate degree of accuracy to 1 decimal place only.
Thus, we get,
\[R = 2.447 \times {10^6} \approx 2.4 \times {10^6}\]
Hence, the value of \[R\] giving an answer in standard form to an appropriate degree of accuracy is \[2.4 \times {10^6}\].
Thus, this is the required answer.
Note:
Accuracy may be affected by rounding, the use of significant figures or ranges in measurement. In maths “to an appropriate degree of accuracy” means that the question wants us to present our answer in the same form as the least accurate measure in the question. Also, we should know that the accuracy of a measurement or approximation is the degree of closeness to the exact value whereas the error is the difference between the approximation and the exact value. Hence, approximation and error are complete different terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers