Given a parallelogram ABCD. Complete each statement along with the definition used:
$(i)$ $AD = $ $(ii)$ $\angle DCB = $ $(iii)$ $OC = $ $(iv)$ $m\angle DAB + m\angle CDA = $
Answer
Verified
504k+ views
Hint: Use the properties of parallelogram: Opposite sides are parallel and equal, opposite angles are equal and sum of adjacent angles is ${180^ \circ }$.
Complete step-by-step answer:
Given, ACBCD is a parallelogram with O as the point of intersection of its diagonals AC and BD.
$(i)$ We know that in parallelogram, lengths of opposite sides are equal. Hence, we can conclude that:
$ \Rightarrow AD = BC$
$(ii)$ We know that in parallelogram, measure of opposite angles is equal. Hence, we can conclude that:
$ \Rightarrow \angle DCB = \angle DAB$
$(iii)$ We know that in parallelogram, diagonals bisect each other. Hence, we can conclude that:
$ \Rightarrow OC = OA$
$(iv)$ We know that in parallelogram, adjacent angles are supplementary (i.e. their sum is ${180^ \circ }$). Hence, we can conclude that:
$ \Rightarrow m\angle DAB + m\angle CDA = {180^ \circ }$
Note: In parallelogram, although the diagonals bisect each other but their lengths are not equal.
In the above parallelogram, $AC \ne BD$.
Complete step-by-step answer:
Given, ACBCD is a parallelogram with O as the point of intersection of its diagonals AC and BD.
$(i)$ We know that in parallelogram, lengths of opposite sides are equal. Hence, we can conclude that:
$ \Rightarrow AD = BC$
$(ii)$ We know that in parallelogram, measure of opposite angles is equal. Hence, we can conclude that:
$ \Rightarrow \angle DCB = \angle DAB$
$(iii)$ We know that in parallelogram, diagonals bisect each other. Hence, we can conclude that:
$ \Rightarrow OC = OA$
$(iv)$ We know that in parallelogram, adjacent angles are supplementary (i.e. their sum is ${180^ \circ }$). Hence, we can conclude that:
$ \Rightarrow m\angle DAB + m\angle CDA = {180^ \circ }$
Note: In parallelogram, although the diagonals bisect each other but their lengths are not equal.
In the above parallelogram, $AC \ne BD$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE