Answer
Verified
443.1k+ views
Hint: Here, we will draw a figure representing the given situation. We will use the fact that the diagonals of a parallelogram bisect each other at right angles. We will then find the medians for their respective triangles. Hence, this will help us to prove that $ar\left( {\vartriangle GXF} \right) = ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle GXH} \right) = ar\left( {\vartriangle EXF} \right)$.
Complete step-by-step answer:
We know that , in a parallelogram, the diagonals bisect each other.
This means that since, the diagonals $EG$ and $FH$ intersect each other at $X$. Hence, $X$ is the mid-point of the diagonals $EG$ and $FH$.
Now we will draw the diagram based on the given information.
We know that the diagonals bisect each other at $90^\circ $
Hence, in the triangle $EFG$, $FX$ is the median.
Now, the median of a triangle divides it in two equal triangles with equal areas.
Therefore,
$ar\left( {\vartriangle EXF} \right) = ar\left( {\vartriangle GXF} \right)$……………………$\left( 1 \right)$
Similarly,
In the triangle $FGH$, $GX$ is the median.
Therefore,
$ar\left( {\vartriangle HGX} \right) = ar\left( {\vartriangle GXF} \right)$…………….….. $\left( 2 \right)$
Also, in the triangle $EHG$, $HX$ is the median.
Therefore,
$ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle HGX} \right)$…………………. $\left( 3 \right)$
Hence, from the equations, $\left( 1 \right)$, $\left( 2 \right)$ and $\left( 3 \right)$, we get
$ar\left( {\vartriangle EXF} \right) = ar\left( {\vartriangle GXF} \right) = ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle HGX} \right)$
Therefore, it is proved that $ar\left( {\vartriangle GXF} \right) = ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle GXH} \right) = ar\left( {\vartriangle EXF} \right)$.
Note: A parallelogram is a quadrilateral in which the pair of opposite sides are parallel and equal to each other. Also, each diagonal in a parallelogram divides it into two congruent triangles. The diagonals of the parallelogram bisects each other i.e. when they intersect, they are divided into two equal parts. This means that if the length of the whole diagonal is for example 6 cm then, after intersecting with another diagonal, it gets divided into two equal parts of 3 cm each. Hence, this is an important property of the parallelograms.
Complete step-by-step answer:
We know that , in a parallelogram, the diagonals bisect each other.
This means that since, the diagonals $EG$ and $FH$ intersect each other at $X$. Hence, $X$ is the mid-point of the diagonals $EG$ and $FH$.
Now we will draw the diagram based on the given information.
We know that the diagonals bisect each other at $90^\circ $
Hence, in the triangle $EFG$, $FX$ is the median.
Now, the median of a triangle divides it in two equal triangles with equal areas.
Therefore,
$ar\left( {\vartriangle EXF} \right) = ar\left( {\vartriangle GXF} \right)$……………………$\left( 1 \right)$
Similarly,
In the triangle $FGH$, $GX$ is the median.
Therefore,
$ar\left( {\vartriangle HGX} \right) = ar\left( {\vartriangle GXF} \right)$…………….….. $\left( 2 \right)$
Also, in the triangle $EHG$, $HX$ is the median.
Therefore,
$ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle HGX} \right)$…………………. $\left( 3 \right)$
Hence, from the equations, $\left( 1 \right)$, $\left( 2 \right)$ and $\left( 3 \right)$, we get
$ar\left( {\vartriangle EXF} \right) = ar\left( {\vartriangle GXF} \right) = ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle HGX} \right)$
Therefore, it is proved that $ar\left( {\vartriangle GXF} \right) = ar\left( {\vartriangle EXH} \right) = ar\left( {\vartriangle GXH} \right) = ar\left( {\vartriangle EXF} \right)$.
Note: A parallelogram is a quadrilateral in which the pair of opposite sides are parallel and equal to each other. Also, each diagonal in a parallelogram divides it into two congruent triangles. The diagonals of the parallelogram bisects each other i.e. when they intersect, they are divided into two equal parts. This means that if the length of the whole diagonal is for example 6 cm then, after intersecting with another diagonal, it gets divided into two equal parts of 3 cm each. Hence, this is an important property of the parallelograms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE