
Given, \[\text{pH}\] of \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\] if \[{{\text{K}}_{\text{1}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{ , }{{\text{K}}_{\text{2}}}\text{ = 4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\] .
A) \[8.34\]
B) \[9.6\]
C) \[8.2\]
D) \[9.9\]
Answer
582.6k+ views
Hint: The \[\text{pH}\] for the polyprotic acid is equal to half the sum of the $\text{pka}$ values. The $\text{pka}$ values are calculated by taking the negative logarithm of dissociation constant.
$\text{pka=-log (ka)}$.
Complete answer:
Sodium bicarbonate \[\text{NaHC}{{\text{O}}_{\text{3}}}\] is a sodium salt of carbonic acid${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}$. Carbonic acid is a weak acid. It does not undergo complete dissociation. The carbonic acid is polyprotic. The carbonic acid dissociates to give the two protons in solution. The dissociation of carbonic acid is as follows:
The first dissociation of carbonic acid as follows,
${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+HCO}_{\text{3}}^{\text{-}}\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}=\dfrac{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ {{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}} \right]}$
The second dissociation constant for carbonic acid is as:
$\text{HCO}_{\text{3}}^{\text{-}}\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+ CO}_{\text{3}}^{\text{2-}}\text{ }{{\text{K}}_{{{a}_{2}}}}=\dfrac{\left[ \text{CO}_{\text{3}}^{\text{2-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]}$
Here \[\text{NaHC}{{\text{O}}_{\text{3}}}\] undergoes the dissociation to give:
\[\text{NaHC}{{\text{O}}_{\text{3}}}\to \text{ HCO}_{3}^{-}\text{ + }{{\text{H}}^{\text{+}}}\]
From here let's find out the \[\text{pH}\] solution. To do so first calculate the $\text{pka}$ values for $\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}$ and $\text{ }{{\text{K}}_{{{a}_{2}}}}$.
$\text{pka}$Values are calculated by taking the negative log of the dissociation constant values.
$\text{pk}{{\text{a}}_{\text{1}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-7}}})$
We have, $\text{pk}{{\text{a}}_{\text{1}}}=6.34$
Similarly, $\text{pk}{{\text{a}}_{\text{2}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-11}}})$
We have, $\text{pk}{{\text{a}}_{2}}=10.34$
We know that for polyprotic acids the \[\text{pH}\]is equal to half the sum of $\text{pka}$values of first and second dissociation constant.
Therefore, $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{pK}{{\text{a}}_{\text{1}}}\text{ + pK}{{\text{a}}_{\text{2}}} \right)$
Let us substitute the values for $\text{pka}$values we get,
$\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{6}\text{.34 + 10}\text{.34} \right)$
Or $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( 16.68 \right)$.We get,
Or $\text{pH=8}\text{.34}$
Thus, the pH for the \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\]solution is $8.34$ .
The sodium bicarbonate is a salt of carbonic acid. Even though it liberates hydroxide ions. Its pH can be calculated using the dissociation constant of its corresponding carbonic acid.
Hence, (A) is the correct option.
Note:
There is one more method to determine the $\text{pH}$ solution. This method can be said as the condensed form of the above-explained method.
For polyprotic acid having more than one dissociation constant, the concentration of proton is given by,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{2}}}}\]
Let's substitute the values we get,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{\text{(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{)(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\text{)}}=\sqrt{2.025\times {{10}^{-17}}}\]
Thus, \[\left[ {{\text{H}}^{\text{+}}} \right]\text{=4}\text{.5}\times \text{1}{{\text{0}}^{\text{-9}}}\]’
We get, $\text{pH= -log }\left( 4.5\times {{10}^{-9}} \right)=8.34$
$\text{pka=-log (ka)}$.
Complete answer:
Sodium bicarbonate \[\text{NaHC}{{\text{O}}_{\text{3}}}\] is a sodium salt of carbonic acid${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}$. Carbonic acid is a weak acid. It does not undergo complete dissociation. The carbonic acid is polyprotic. The carbonic acid dissociates to give the two protons in solution. The dissociation of carbonic acid is as follows:
The first dissociation of carbonic acid as follows,
${{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}}\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+HCO}_{\text{3}}^{\text{-}}\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}=\dfrac{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ {{\text{H}}_{\text{2}}}\text{C}{{\text{O}}_{\text{3}}} \right]}$
The second dissociation constant for carbonic acid is as:
$\text{HCO}_{\text{3}}^{\text{-}}\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{+ CO}_{\text{3}}^{\text{2-}}\text{ }{{\text{K}}_{{{a}_{2}}}}=\dfrac{\left[ \text{CO}_{\text{3}}^{\text{2-}} \right]\left[ {{\text{H}}^{\text{+}}} \right]}{\left[ \text{HCO}_{\text{3}}^{\text{-}} \right]}$
Here \[\text{NaHC}{{\text{O}}_{\text{3}}}\] undergoes the dissociation to give:
\[\text{NaHC}{{\text{O}}_{\text{3}}}\to \text{ HCO}_{3}^{-}\text{ + }{{\text{H}}^{\text{+}}}\]
From here let's find out the \[\text{pH}\] solution. To do so first calculate the $\text{pka}$ values for $\text{ }{{\text{K}}_{{{\text{a}}_{\text{1}}}}}$ and $\text{ }{{\text{K}}_{{{a}_{2}}}}$.
$\text{pka}$Values are calculated by taking the negative log of the dissociation constant values.
$\text{pk}{{\text{a}}_{\text{1}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-7}}})$
We have, $\text{pk}{{\text{a}}_{\text{1}}}=6.34$
Similarly, $\text{pk}{{\text{a}}_{\text{2}}}=-\log \text{ ( 4}\text{.5}\times \text{1}{{\text{0}}^{\text{-11}}})$
We have, $\text{pk}{{\text{a}}_{2}}=10.34$
We know that for polyprotic acids the \[\text{pH}\]is equal to half the sum of $\text{pka}$values of first and second dissociation constant.
Therefore, $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{pK}{{\text{a}}_{\text{1}}}\text{ + pK}{{\text{a}}_{\text{2}}} \right)$
Let us substitute the values for $\text{pka}$values we get,
$\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( \text{6}\text{.34 + 10}\text{.34} \right)$
Or $\text{pH=}\dfrac{\text{1}}{\text{2}}\text{ }\left( 16.68 \right)$.We get,
Or $\text{pH=8}\text{.34}$
Thus, the pH for the \[\text{0}\text{.1 M NaHC}{{\text{O}}_{\text{3}}}\]solution is $8.34$ .
The sodium bicarbonate is a salt of carbonic acid. Even though it liberates hydroxide ions. Its pH can be calculated using the dissociation constant of its corresponding carbonic acid.
Hence, (A) is the correct option.
Note:
There is one more method to determine the $\text{pH}$ solution. This method can be said as the condensed form of the above-explained method.
For polyprotic acid having more than one dissociation constant, the concentration of proton is given by,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{{{\text{K}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{K}}_{\text{2}}}}\]
Let's substitute the values we get,
\[\left[ {{\text{H}}^{\text{+}}} \right]\text{=}\sqrt{\text{(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{)(4}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{-11}}}\text{)}}=\sqrt{2.025\times {{10}^{-17}}}\]
Thus, \[\left[ {{\text{H}}^{\text{+}}} \right]\text{=4}\text{.5}\times \text{1}{{\text{0}}^{\text{-9}}}\]’
We get, $\text{pH= -log }\left( 4.5\times {{10}^{-9}} \right)=8.34$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

