Given that \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] and \[x\] lies in first quadrant, calculate without the use of tables, the values of \[\sin x\], \[\cos x\] and \[\tan x\]
Answer
Verified
448.8k+ views
Hint: Here, we will use a half angle formula to find the value of \[\cos x\]. Similarly, we will find the value of \[\sin x\] by using the half angle formula. Then we will find the value of \[\tan x\] by simply dividing them using the property of \[\tan x\].
Formula used:
1. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
2. \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\]
3. \[\sin 2\theta = 2\sin \theta \cos \theta \]
4. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step answer:
According to the question, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\].
Now, by using the half angle formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\].
\[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\]…………………………………..\[\left( 1 \right)\]
Therefore, from equation \[\left( 1 \right)\], we get
\[\cos x = 2{\left( {\dfrac{{12}}{{13}}} \right)^2} - 1 = 2\left( {\dfrac{{144}}{{169}}} \right) - 1\]
\[ \Rightarrow \cos x = \left( {\dfrac{{288 - 169}}{{169}}} \right) = \dfrac{{119}}{{169}}\]
Therefore, the value of \[\cos x = \dfrac{{119}}{{169}}\]…………………………\[\left( 2 \right)\]
Now, we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\].
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\cos ^2}\dfrac{x}{2}\]
But, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\], hence,
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2} = 1 - \dfrac{{144}}{{169}}\]
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = \dfrac{{169 - 144}}{{169}} = \dfrac{{25}}{{169}}\]
Taking square root on both sides, we get
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{25}}{{169}}} = \dfrac{5}{{13}}\]
Substituting \[\sin \dfrac{x}{2} = \dfrac{5}{{13}}\] and \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] in the formula \[\sin x = 2\sin \dfrac{x}{2} \times \cos \dfrac{x}{2}\], we get
\[ \Rightarrow \sin x = 2\left( {\dfrac{5}{{13}}} \right)\left( {\dfrac{{12}}{{13}}} \right)\]
Hence, solving further, we get
\[ \Rightarrow \sin x = \dfrac{{120}}{{169}}\]………………………………\[\left( 3 \right)\]
Therefore, the value of \[\sin x = \dfrac{{120}}{{169}}\]
Now, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, from equation \[\left( 2 \right)\]and \[\left( 3 \right)\], we get
\[\tan x = \dfrac{{\dfrac{{120}}{{169}}}}{{\dfrac{{119}}{{169}}}} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\]as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\]and \[\dfrac{{120}}{{119}}\] respectively.
This is the required answer.
Note: We know that we can apply the trigonometric identities in a right angled triangle whose:
Hypotenuse\[ = H\], Perpendicular side \[ = P\]and the Base \[ = B\].
Hence, an alternate way to solve this question is:
We will first find the value of \[\cos x\] in the same way as before.
Hence, by using half angle formula, and from \[\left( 1 \right)\]and \[\left( 2 \right)\], we will get:
\[\cos x = \dfrac{{119}}{{169}}\]
Now, instead of using formulas further, we will use the right angle formulas.
As we know, in a right angled triangle, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Also, since, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Hence, substituting \[B = 119\]and \[H = 169\] in the formula \[{H^2} = {P^2} + {B^2}\], we get
\[ \Rightarrow {\left( {169} \right)^2} - {\left( {119} \right)^2} = {P^2}\]
Using the property \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow {P^2} = \left( {169 + 119} \right)\left( {169 - 119} \right)\]
\[ \Rightarrow {P^2} = 288 \times 50 = 14400\]
Taking square root on both side, we get
\[ \Rightarrow P = \sqrt {14400} = 120\]
Therefore, \[\sin x = \dfrac{P}{H} = \dfrac{{120}}{{169}}\]
And, \[\tan x = \dfrac{P}{B} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\] as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\] and \[\dfrac{{120}}{{119}}\] respectively.
Formula used:
1. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
2. \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\]
3. \[\sin 2\theta = 2\sin \theta \cos \theta \]
4. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step-by-step answer:
According to the question, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\].
Now, by using the half angle formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\].
\[\cos x = 2{\cos ^2}\dfrac{x}{2} - 1\]…………………………………..\[\left( 1 \right)\]
Therefore, from equation \[\left( 1 \right)\], we get
\[\cos x = 2{\left( {\dfrac{{12}}{{13}}} \right)^2} - 1 = 2\left( {\dfrac{{144}}{{169}}} \right) - 1\]
\[ \Rightarrow \cos x = \left( {\dfrac{{288 - 169}}{{169}}} \right) = \dfrac{{119}}{{169}}\]
Therefore, the value of \[\cos x = \dfrac{{119}}{{169}}\]…………………………\[\left( 2 \right)\]
Now, we know that, \[{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1\].
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\cos ^2}\dfrac{x}{2}\]
But, \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\], hence,
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2} = 1 - \dfrac{{144}}{{169}}\]
\[ \Rightarrow {\sin ^2}\dfrac{x}{2} = \dfrac{{169 - 144}}{{169}} = \dfrac{{25}}{{169}}\]
Taking square root on both sides, we get
\[ \Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{25}}{{169}}} = \dfrac{5}{{13}}\]
Substituting \[\sin \dfrac{x}{2} = \dfrac{5}{{13}}\] and \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] in the formula \[\sin x = 2\sin \dfrac{x}{2} \times \cos \dfrac{x}{2}\], we get
\[ \Rightarrow \sin x = 2\left( {\dfrac{5}{{13}}} \right)\left( {\dfrac{{12}}{{13}}} \right)\]
Hence, solving further, we get
\[ \Rightarrow \sin x = \dfrac{{120}}{{169}}\]………………………………\[\left( 3 \right)\]
Therefore, the value of \[\sin x = \dfrac{{120}}{{169}}\]
Now, we know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
Hence, from equation \[\left( 2 \right)\]and \[\left( 3 \right)\], we get
\[\tan x = \dfrac{{\dfrac{{120}}{{169}}}}{{\dfrac{{119}}{{169}}}} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\]as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\]and \[\dfrac{{120}}{{119}}\] respectively.
This is the required answer.
Note: We know that we can apply the trigonometric identities in a right angled triangle whose:
Hypotenuse\[ = H\], Perpendicular side \[ = P\]and the Base \[ = B\].
Hence, an alternate way to solve this question is:
We will first find the value of \[\cos x\] in the same way as before.
Hence, by using half angle formula, and from \[\left( 1 \right)\]and \[\left( 2 \right)\], we will get:
\[\cos x = \dfrac{{119}}{{169}}\]
Now, instead of using formulas further, we will use the right angle formulas.
As we know, in a right angled triangle, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Also, since, \[\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}\]
Hence, substituting \[B = 119\]and \[H = 169\] in the formula \[{H^2} = {P^2} + {B^2}\], we get
\[ \Rightarrow {\left( {169} \right)^2} - {\left( {119} \right)^2} = {P^2}\]
Using the property \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\], we get
\[ \Rightarrow {P^2} = \left( {169 + 119} \right)\left( {169 - 119} \right)\]
\[ \Rightarrow {P^2} = 288 \times 50 = 14400\]
Taking square root on both side, we get
\[ \Rightarrow P = \sqrt {14400} = 120\]
Therefore, \[\sin x = \dfrac{P}{H} = \dfrac{{120}}{{169}}\]
And, \[\tan x = \dfrac{P}{B} = \dfrac{{120}}{{119}}\]
Therefore, without the use of tables, we have calculated the values of \[\sin x\], \[\cos x\] and \[\tan x\] as \[\dfrac{{120}}{{169}}\],\[\dfrac{{119}}{{169}}\] and \[\dfrac{{120}}{{119}}\] respectively.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE