Answer
Verified
441.6k+ views
Hint: In this we have to check all the given thermodynamic equations by making one equation from the other two given equations and so on and then we can easily find the correct thermodynamic equations for the given reactions.
Complete step by step answer:
By the term the enthalpy of formation, we simply mean the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements and it is represented by $\Delta {{H}^{\circ }}$.
To know, which thermodynamic relation is correct, we will check the all given equations one by one as;
(a) z= x+ y
Consider the z equation:
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$---------(1)
We have to make this equation from the rest two equations;
The rest two equation are as;
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(2)
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$----------(3)
We can see that , in equation (1), CO is on the reactant side, we so will invert equation (3) so that the CO will come on reactant side and now it ${{\Delta }_{r}}{{H}^{\circ }}=-y\text{ }kJ\text{ }mol{{e}^{-1}}$. And add equations (2) and (3) to get equation (1), then;
z= x-y
so , option(a) is incorrect.
(b) x=y-z
Consider the x equation:
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(4)
We have to make this equation from the rest two equations;
The rest two equation are as;
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$----------(5)
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$----------(6)
On adding the equations (5) and (6), we will get the equation(4), then;
x=y +z
so, option(b) is also incorrect.
(c) x=y+ z
From the option (b), we come to know that the option (c) is correct.
(d) y=2z-x
Consider the y equation :
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$---------(7)
We have to make this equation from the rest two equations;
The rest two equation are as;
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$----------(8)
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(9)
We can see that , in equation (7), CO is on the product side, we so will invert equation (8) so that the CO will come on product side and now it ${{\Delta }_{r}}{{H}^{\circ }}=-z\text{ }kJ\text{ }mol{{e}^{-1}}$. And add equations (8) and (9) to get equation (7), then;
y= x-z
so, option(d) is also incorrect.
Hence, from the above we can see that the correct option is (c).
Note: The enthalpy of formation of elements which are present in their molecular forms like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Complete step by step answer:
By the term the enthalpy of formation, we simply mean the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements and it is represented by $\Delta {{H}^{\circ }}$.
To know, which thermodynamic relation is correct, we will check the all given equations one by one as;
(a) z= x+ y
Consider the z equation:
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$---------(1)
We have to make this equation from the rest two equations;
The rest two equation are as;
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(2)
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$----------(3)
We can see that , in equation (1), CO is on the reactant side, we so will invert equation (3) so that the CO will come on reactant side and now it ${{\Delta }_{r}}{{H}^{\circ }}=-y\text{ }kJ\text{ }mol{{e}^{-1}}$. And add equations (2) and (3) to get equation (1), then;
z= x-y
so , option(a) is incorrect.
(b) x=y-z
Consider the x equation:
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(4)
We have to make this equation from the rest two equations;
The rest two equation are as;
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$----------(5)
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$----------(6)
On adding the equations (5) and (6), we will get the equation(4), then;
x=y +z
so, option(b) is also incorrect.
(c) x=y+ z
From the option (b), we come to know that the option (c) is correct.
(d) y=2z-x
Consider the y equation :
$C(graphite)+\dfrac{1}{2}{{O}_{2}}(g)\to CO(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=y\text{ }kJ\text{ }mol{{e}^{-1}}$---------(7)
We have to make this equation from the rest two equations;
The rest two equation are as;
$CO(g)+\dfrac{1}{2}{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=z\text{ }kJ\text{ }mol{{\text{e}}^{-1}}$----------(8)
$C(graphite)+{{O}_{2}}(g)\to C{{O}_{2}}(g)\text{ }{{\Delta }_{r}}{{H}^{\circ }}=x\text{ }kJ\text{ }mol{{e}^{-1}}$----------(9)
We can see that , in equation (7), CO is on the product side, we so will invert equation (8) so that the CO will come on product side and now it ${{\Delta }_{r}}{{H}^{\circ }}=-z\text{ }kJ\text{ }mol{{e}^{-1}}$. And add equations (8) and (9) to get equation (7), then;
y= x-z
so, option(d) is also incorrect.
Hence, from the above we can see that the correct option is (c).
Note: The enthalpy of formation of elements which are present in their molecular forms like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE