
Given that\[\cosh x=\dfrac{5}{4}\], determine the value of \[\cosh 2x\]. Use the formula for \[\cosh \left( 2x+x \right)\] to determine the value of \[\cosh 3x\].
Answer
517.5k+ views
Hint: In order to find the value of \[\cosh 2x\] and \[\cosh 3x\], firstly, we have to find the value of \[\cosh 2x\] by evaluating it in terms of \[\cosh x=\dfrac{5}{4}\] and then we must find the exponential function values from \[\cosh x=\dfrac{5}{4}\]. Then we will be finding the value of \[\cosh 3x\] by splitting it into \[\cosh \left( 2x+x \right)\] by evaluating each term of the formula of \[\cosh \left( 2x+x \right)\].
Complete step by step answer:
Now let us learn about the hyperbolic functions. The hyperbolic functions are the analogues of trigonometric functions but we will be using hyperbola instead of circle. The domain of the various functions varies. We can easily obtain the derivative formula for the hyperbolic tangent. Inverse hyperbolic functions are also called area hyperbolic functions.
Now let us start solving our given problem.
Let us find the value of \[\cosh 2x\].
We are given that, \[\cosh x=\dfrac{5}{4}\]
We know that, \[\cosh 2x=2{{\left( \cosh x \right)}^{2}}-1\]
Upon substituting the value, we get
\[\begin{align}
& \Rightarrow \cosh 2x=2{{\left( \cosh x \right)}^{2}}-1 \\
& \Rightarrow \cosh 2x=2{{\left( \dfrac{5}{4} \right)}^{2}}-1 \\
& \Rightarrow \cosh 2x=2\left( \dfrac{25}{16} \right)-1 \\
& \Rightarrow \cosh 2x=\dfrac{25-8}{8}=\dfrac{17}{8} \\
\end{align}\]
Now let us find the exponential function of the given hyperbolic function \[\cosh x=\dfrac{5}{4}\].
We have, \[\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}=\dfrac{5}{4}\]
Upon solving it, we get
\[\begin{align}
& \dfrac{{{e}^{x}}+{{e}^{-x}}}{2}=\dfrac{5}{4} \\
& \Rightarrow 4{{e}^{x}}+4{{e}^{-x}}=10 \\
& \Rightarrow 4{{e}^{2x}}-10ex+4=0 \\
& \Rightarrow {{e}^{x}}=\dfrac{10\pm \sqrt{100-64}}{8} \\
& \Rightarrow {{e}^{x}}=2or\dfrac{1}{2} \\
\end{align}\]
Now let us find the value of \[\cosh 3x\] by splitting it in the form of \[\cosh \left( 2x+x \right)\].
We know that, \[\sinh x=\dfrac{3}{4}or-\dfrac{3}{4}\]
Then, \[\sinh 2x=2\cosh x\sinh x\]
Upon solving it, we get
\[\begin{align}
& \sinh 2x=2\cosh x\sinh x \\
& \Rightarrow \sinh 2x=2\left( \dfrac{5}{4} \right)\left( \dfrac{3}{4} \right)=\dfrac{15}{8} \\
\end{align}\]
Now, we have
\[\begin{align}
& \cosh 3x=\cosh \left( 2x+x \right)=\left( \cosh 2x \right)\left( \cosh x \right)+\left( \sinh 2x \right)\left( \sinh x \right) \\
& \Rightarrow \cosh 3x=\dfrac{17}{8}\left( \dfrac{5}{4} \right)+\dfrac{15}{8}\left( \dfrac{3}{4} \right) \\
& \Rightarrow \cosh 3x=\dfrac{5}{4} \\
\end{align}\]
\[\therefore \] \[\cosh 3x=\dfrac{5}{4}\]
Note: We can apply these hyperbolic functions in our everyday life. For example, hyperbolic cosine function can be used in describing the shape of the curve formed by the voltage line formed between two towers. These functions can also be used in defining a measure of some of the non-Euclidean geometry.
Complete step by step answer:
Now let us learn about the hyperbolic functions. The hyperbolic functions are the analogues of trigonometric functions but we will be using hyperbola instead of circle. The domain of the various functions varies. We can easily obtain the derivative formula for the hyperbolic tangent. Inverse hyperbolic functions are also called area hyperbolic functions.
Now let us start solving our given problem.
Let us find the value of \[\cosh 2x\].
We are given that, \[\cosh x=\dfrac{5}{4}\]
We know that, \[\cosh 2x=2{{\left( \cosh x \right)}^{2}}-1\]
Upon substituting the value, we get
\[\begin{align}
& \Rightarrow \cosh 2x=2{{\left( \cosh x \right)}^{2}}-1 \\
& \Rightarrow \cosh 2x=2{{\left( \dfrac{5}{4} \right)}^{2}}-1 \\
& \Rightarrow \cosh 2x=2\left( \dfrac{25}{16} \right)-1 \\
& \Rightarrow \cosh 2x=\dfrac{25-8}{8}=\dfrac{17}{8} \\
\end{align}\]
Now let us find the exponential function of the given hyperbolic function \[\cosh x=\dfrac{5}{4}\].
We have, \[\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}=\dfrac{5}{4}\]
Upon solving it, we get
\[\begin{align}
& \dfrac{{{e}^{x}}+{{e}^{-x}}}{2}=\dfrac{5}{4} \\
& \Rightarrow 4{{e}^{x}}+4{{e}^{-x}}=10 \\
& \Rightarrow 4{{e}^{2x}}-10ex+4=0 \\
& \Rightarrow {{e}^{x}}=\dfrac{10\pm \sqrt{100-64}}{8} \\
& \Rightarrow {{e}^{x}}=2or\dfrac{1}{2} \\
\end{align}\]
Now let us find the value of \[\cosh 3x\] by splitting it in the form of \[\cosh \left( 2x+x \right)\].
We know that, \[\sinh x=\dfrac{3}{4}or-\dfrac{3}{4}\]
Then, \[\sinh 2x=2\cosh x\sinh x\]
Upon solving it, we get
\[\begin{align}
& \sinh 2x=2\cosh x\sinh x \\
& \Rightarrow \sinh 2x=2\left( \dfrac{5}{4} \right)\left( \dfrac{3}{4} \right)=\dfrac{15}{8} \\
\end{align}\]
Now, we have
\[\begin{align}
& \cosh 3x=\cosh \left( 2x+x \right)=\left( \cosh 2x \right)\left( \cosh x \right)+\left( \sinh 2x \right)\left( \sinh x \right) \\
& \Rightarrow \cosh 3x=\dfrac{17}{8}\left( \dfrac{5}{4} \right)+\dfrac{15}{8}\left( \dfrac{3}{4} \right) \\
& \Rightarrow \cosh 3x=\dfrac{5}{4} \\
\end{align}\]
\[\therefore \] \[\cosh 3x=\dfrac{5}{4}\]
Note: We can apply these hyperbolic functions in our everyday life. For example, hyperbolic cosine function can be used in describing the shape of the curve formed by the voltage line formed between two towers. These functions can also be used in defining a measure of some of the non-Euclidean geometry.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

