Answer
Verified
461.1k+ views
Hint:This question is based on set theory rules. Apply suitable operations to get intersection or union as required operations on the sets. Also, n(A) will be the number of elements in the set A.
Complete step-by-step answer:
Given data in the question,
Given $\xi $ = (a, b , c, d, e, f, g ,h ,I, j, k) , C= (b, e, a, d) , D = (j, a ,d , e) and E = (b, a ,d, g, e).
Here $\xi $ is the universal set.
A. $C \cap D \cap E$
It will be all common elements from the 3 sets. So we have
$\therefore $ $C \cap D \cap E$ will be = ( a, d, e )
B.$C \cup D \cup E$
It will be all elements present in at least one set. So we have,
$\therefore $ $C \cup D \cup E$ will be = (b, e , a, d , j, g)
C.n[($C \cup D$) $ \cap E$ ]
First we find
$C \cup D$ = (b, e, a, d, j)
Then we get ($C \cup D$) $ \cap E$ as common from $C \cup D$ and E ,
($C \cup D$) $ \cap E$ = (b, e, a, d)
Thus the number of elements in this set will be 4.
$\therefore $ n[($C \cup D$) $ \cap E$ ] = 4
D.n[($C \cup E$) $ \cap D$]
First we find
$C \cup E$ = (b, e, a, d, g)
Then we get ($C \cup E$) $ \cap D$ as common from $C \cup E$ and D ,
($C \cup E$) $ \cap D$ = (a, d, e)
Thus the number of elements in this set will be 3.
$\therefore $ n[($C \cup E$) $ \cap D$] = 3
Note:Set theory is really an interesting branch of algebra. Various set related operations like intersection, union, compliment, difference etc. are very common operations. Many real life problems are solvable by using set theory rules properly.
Complete step-by-step answer:
Given data in the question,
Given $\xi $ = (a, b , c, d, e, f, g ,h ,I, j, k) , C= (b, e, a, d) , D = (j, a ,d , e) and E = (b, a ,d, g, e).
Here $\xi $ is the universal set.
A. $C \cap D \cap E$
It will be all common elements from the 3 sets. So we have
$\therefore $ $C \cap D \cap E$ will be = ( a, d, e )
B.$C \cup D \cup E$
It will be all elements present in at least one set. So we have,
$\therefore $ $C \cup D \cup E$ will be = (b, e , a, d , j, g)
C.n[($C \cup D$) $ \cap E$ ]
First we find
$C \cup D$ = (b, e, a, d, j)
Then we get ($C \cup D$) $ \cap E$ as common from $C \cup D$ and E ,
($C \cup D$) $ \cap E$ = (b, e, a, d)
Thus the number of elements in this set will be 4.
$\therefore $ n[($C \cup D$) $ \cap E$ ] = 4
D.n[($C \cup E$) $ \cap D$]
First we find
$C \cup E$ = (b, e, a, d, g)
Then we get ($C \cup E$) $ \cap D$ as common from $C \cup E$ and D ,
($C \cup E$) $ \cap D$ = (a, d, e)
Thus the number of elements in this set will be 3.
$\therefore $ n[($C \cup E$) $ \cap D$] = 3
Note:Set theory is really an interesting branch of algebra. Various set related operations like intersection, union, compliment, difference etc. are very common operations. Many real life problems are solvable by using set theory rules properly.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE