Answer
Verified
429.9k+ views
Hint: In request to sort out the number of grams of bromine you get in that numerous grams of calcium bromide, \[CaB{r_2}\] , you should locate the compound's percent creation.
To do that, utilization the way that one mole of calcium bromide contains
-One mole of calcium cations, \[C{a^{2 + }}\]
-Two moles of bromide anions, \[2 \times B{r^ - }\]
Complete step by step answer:
This will be a typical subject too! The mantra you should adhere to is grams to moles, to moles, to grams. How about we stroll through that. We will take the grams of \[CaB{r_2}\] and convert it to moles. At that point from moles of \[CaB{r_2}\] , we'll convert that to moles of \[Br\] , and afterward convert THAT to grams of \[Br\] .
You can in this manner use the molar mass of calcium bromide and the molar mass of bromine to decide the number of grams of bromine you get per \[100{\text{ }}g\] of calcium bromide.
The two molar mass are
${\text{For CaB}}{{\text{r}}_2}:\;\:\;\:{M_M} = {\text{199}}{\text{.89 g mo}}{{\text{l}}^{ - 1}}$
${\text{For Br:}}\;\:\;\:\;\:\;\:\;\:\;\:{M_M} = {\text{79}}{\text{.904 g mo}}{{\text{l}}^{ - 1}}$
In this way, two moles of bromide anions for each one mole of calcium bromide will give you a percent creation of
$\dfrac{{2 \times 79.904\not{{{\text{g mo}}{{\text{l}}^{ - 1}}}}}}{{199.89\not{{{\text{g mo}}{{\text{l}}^{ - 1}}}}}} \times 100 = {\text{79}}{\text{.95% Br}}$
This implies that each \[100{\text{ }}g\] of calcium bromide will contain \[79.95{\text{ }}g\] of essential bromine as bromide cations.
All you need to do now is utilize this percent piece as a change factor to decide the number of grams of bromine you get in that \[195 - g\] test of calcium bromide
\[195\not{{{\text{g CaB}}{{\text{r}}_2}}} \cdot \mathop {\mathop {\dfrac{{{\text{79}}{\text{.95 g Br}}}}{{100\not{{{\text{g CaB}}{{\text{r}}_2}}}}}}\limits^ \downarrow }\limits^{{\text{79}}{\text{.95% Br}}} = \left[ {156gBr} \right]\]
The appropriate response is adjusted to three sig figs.
Note: Mole percent is the rate that the moles of a specific segment are of the all-out moles that are in a combination. we utilize the molar mass of \[CaB{r_2}\] to get to moles, and utilize the addendum \[2\] to get to moles of \[Br\] from moles of \[CaB{r_2}\] , and afterward the molar mass of \[Br\] to get to grams of \[Br\] !
To do that, utilization the way that one mole of calcium bromide contains
-One mole of calcium cations, \[C{a^{2 + }}\]
-Two moles of bromide anions, \[2 \times B{r^ - }\]
Complete step by step answer:
This will be a typical subject too! The mantra you should adhere to is grams to moles, to moles, to grams. How about we stroll through that. We will take the grams of \[CaB{r_2}\] and convert it to moles. At that point from moles of \[CaB{r_2}\] , we'll convert that to moles of \[Br\] , and afterward convert THAT to grams of \[Br\] .
You can in this manner use the molar mass of calcium bromide and the molar mass of bromine to decide the number of grams of bromine you get per \[100{\text{ }}g\] of calcium bromide.
The two molar mass are
${\text{For CaB}}{{\text{r}}_2}:\;\:\;\:{M_M} = {\text{199}}{\text{.89 g mo}}{{\text{l}}^{ - 1}}$
${\text{For Br:}}\;\:\;\:\;\:\;\:\;\:\;\:{M_M} = {\text{79}}{\text{.904 g mo}}{{\text{l}}^{ - 1}}$
In this way, two moles of bromide anions for each one mole of calcium bromide will give you a percent creation of
$\dfrac{{2 \times 79.904\not{{{\text{g mo}}{{\text{l}}^{ - 1}}}}}}{{199.89\not{{{\text{g mo}}{{\text{l}}^{ - 1}}}}}} \times 100 = {\text{79}}{\text{.95% Br}}$
This implies that each \[100{\text{ }}g\] of calcium bromide will contain \[79.95{\text{ }}g\] of essential bromine as bromide cations.
All you need to do now is utilize this percent piece as a change factor to decide the number of grams of bromine you get in that \[195 - g\] test of calcium bromide
\[195\not{{{\text{g CaB}}{{\text{r}}_2}}} \cdot \mathop {\mathop {\dfrac{{{\text{79}}{\text{.95 g Br}}}}{{100\not{{{\text{g CaB}}{{\text{r}}_2}}}}}}\limits^ \downarrow }\limits^{{\text{79}}{\text{.95% Br}}} = \left[ {156gBr} \right]\]
The appropriate response is adjusted to three sig figs.
Note: Mole percent is the rate that the moles of a specific segment are of the all-out moles that are in a combination. we utilize the molar mass of \[CaB{r_2}\] to get to moles, and utilize the addendum \[2\] to get to moles of \[Br\] from moles of \[CaB{r_2}\] , and afterward the molar mass of \[Br\] to get to grams of \[Br\] !
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE