Answer
Verified
430.5k+ views
Hint: Here, in this question we are asked to graph the line $y = \dfrac{1}{3}x + 2$. Before starting solving the question, we will have to compare it with slope-intercept form i.e., $y = mx + c$. Here, $c = 2$ which means that the intercept on the $y$-axis is $2$ and $m = \dfrac{1}{3}$ which means that the slope of the line is $\dfrac{1}{3}$.
Complete step by step solution:
The given equation of the line is$y = \dfrac{1}{3}x + 2$. We are supposed to put the equation in slope intercept form i.e.,$y = mx + c$. Here, we get $y = \dfrac{1}{3}x + 2$, so we get $m = \dfrac{1}{3}$ and $c = 2$. Now, we will have to make a table of values, which can be done by using different values of $x$.
Here, when we put $x = 3$, we get $y = 3$. So, we get point $\left( {3,3} \right)$. When we put $x = 6$, we get $y = 4$. So, we get point$\left( {6,4} \right)$.
So, now we have points: $\left( {3,3} \right)$,$\left( {6,4} \right)$.
Now, we draw our axes for $x$ and $y$. We have to choose the appropriate scale and mark the values on the $x$ and $y$ axis. Mark all the three points and draw a straight line through these points.
Therefore, we have our required graph.
Note: In order to solve such questions, we first need to analyse what is given to us. The given equation $y = \dfrac{1}{3}x + 2$ is a simple linear equation. To graph a linear equation, we have to draw a line in a $2 - D$ plane. Students should keep in mind that every linear equation represents a straight line. In order to check if the points calculated are correct or not, just put their values in the given equation if L.H.S=R.H.S then, the points are correct.
Complete step by step solution:
The given equation of the line is$y = \dfrac{1}{3}x + 2$. We are supposed to put the equation in slope intercept form i.e.,$y = mx + c$. Here, we get $y = \dfrac{1}{3}x + 2$, so we get $m = \dfrac{1}{3}$ and $c = 2$. Now, we will have to make a table of values, which can be done by using different values of $x$.
Here, when we put $x = 3$, we get $y = 3$. So, we get point $\left( {3,3} \right)$. When we put $x = 6$, we get $y = 4$. So, we get point$\left( {6,4} \right)$.
$x$ | $3$ | $6$ |
$y$ | $3$ | $4$ |
Point $\left( {x,y} \right)$ | $\left( {3,3} \right)$ | $\left( {6,4} \right)$ |
So, now we have points: $\left( {3,3} \right)$,$\left( {6,4} \right)$.
Now, we draw our axes for $x$ and $y$. We have to choose the appropriate scale and mark the values on the $x$ and $y$ axis. Mark all the three points and draw a straight line through these points.
Therefore, we have our required graph.
Note: In order to solve such questions, we first need to analyse what is given to us. The given equation $y = \dfrac{1}{3}x + 2$ is a simple linear equation. To graph a linear equation, we have to draw a line in a $2 - D$ plane. Students should keep in mind that every linear equation represents a straight line. In order to check if the points calculated are correct or not, just put their values in the given equation if L.H.S=R.H.S then, the points are correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE