Answer
Verified
449.7k+ views
Hint: Relation between gravitational force, mass and distance is,
$F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Where G is Newton’s gravitational constant
${{m}_{1}}$ and ${{m}_{2}}$ are the masses
r is the distance.
Complete step by step solution:
Newton stated that in the universe each particle of matter attracts every other particle. This universal attractive force is called “Gravitational”.
Newton’s law:- Force of attraction between any two material particles is directly proportional to the product of masses of the particles and inversely proportional to the square of the distance between them. It acts along the line joining the particles.
$F\propto \dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Where G is the proportionality constant and it is universal constant.
(i) If the mass of an object is doubled:
$m{{'}_{1}}$ = ${{m}_{1}}$
$m'_{2}$ = $2{{m}_{2}}$
$F'=G\dfrac{{{m}_{1}}'{{m}_{2}}'}{{{\left( r{{'}^{{}}} \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}\left( 2{{m}_{2}} \right)}{{{r}^{2}}}$
$F'=2\times G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=2\times F$
When the mass of an object is doubled then the force between them is doubled.
(ii) The distance between object is doubled and tripled:
When $r'=2r$
Then $F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{r{{'}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( 2r \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{4{{r}^{2}}}$
$F'=\dfrac{G}{4}\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=\dfrac{F}{4}$
When the distance between the objects is doubled then force between them is one fourth.
When $r'=3r$
Then $F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( r' \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( 3r \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{9{{r}^{2}}}$
$F'=\dfrac{F}{9}$
When the distance between the objects is tripled then force between them is one ninth.
(iii) The masses of both objects are doubled:
When $\begin{align}
& m{{'}_{1}}=2{{m}_{1}} \\
& m{{'}_{2}}=2{{m}_{2}} \\
\end{align}$
Then $F'=G\dfrac{m{{'}_{1}}m{{'}_{2}}}{{{r}^{2}}}$
$F'=G\dfrac{2{{m}_{1}}\times 2{{m}_{2}}}{{{r}^{2}}}$
$F'=4G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=4F$
When the masses of both objects are doubled then the force between them is four times.
Note: This law is true for each particle of matter, each particle of matter attracts every other particle. Students should use the gravitational force formula carefully and write its term properly.
$F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Where G is Newton’s gravitational constant
${{m}_{1}}$ and ${{m}_{2}}$ are the masses
r is the distance.
Complete step by step solution:
Newton stated that in the universe each particle of matter attracts every other particle. This universal attractive force is called “Gravitational”.
Newton’s law:- Force of attraction between any two material particles is directly proportional to the product of masses of the particles and inversely proportional to the square of the distance between them. It acts along the line joining the particles.
$F\propto \dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
Where G is the proportionality constant and it is universal constant.
(i) If the mass of an object is doubled:
$m{{'}_{1}}$ = ${{m}_{1}}$
$m'_{2}$ = $2{{m}_{2}}$
$F'=G\dfrac{{{m}_{1}}'{{m}_{2}}'}{{{\left( r{{'}^{{}}} \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}\left( 2{{m}_{2}} \right)}{{{r}^{2}}}$
$F'=2\times G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=2\times F$
When the mass of an object is doubled then the force between them is doubled.
(ii) The distance between object is doubled and tripled:
When $r'=2r$
Then $F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{r{{'}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( 2r \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{4{{r}^{2}}}$
$F'=\dfrac{G}{4}\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=\dfrac{F}{4}$
When the distance between the objects is doubled then force between them is one fourth.
When $r'=3r$
Then $F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( r' \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{{{\left( 3r \right)}^{2}}}$
$F'=G\dfrac{{{m}_{1}}{{m}_{2}}}{9{{r}^{2}}}$
$F'=\dfrac{F}{9}$
When the distance between the objects is tripled then force between them is one ninth.
(iii) The masses of both objects are doubled:
When $\begin{align}
& m{{'}_{1}}=2{{m}_{1}} \\
& m{{'}_{2}}=2{{m}_{2}} \\
\end{align}$
Then $F'=G\dfrac{m{{'}_{1}}m{{'}_{2}}}{{{r}^{2}}}$
$F'=G\dfrac{2{{m}_{1}}\times 2{{m}_{2}}}{{{r}^{2}}}$
$F'=4G\dfrac{{{m}_{1}}{{m}_{2}}}{{{r}^{2}}}$
$F'=4F$
When the masses of both objects are doubled then the force between them is four times.
Note: This law is true for each particle of matter, each particle of matter attracts every other particle. Students should use the gravitational force formula carefully and write its term properly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE