$\hat i$ and $\hat j$ are unit vectors along $x - axis$ and $y - axis$ respectively.
A) What is the magnitude and direction of the vectors $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
B) What are the components of the vectors $\overrightarrow B = 2\hat i + 3\hat j$ along the direction of $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
Answer
Verified
465.3k+ views
Hint:Use the value of $\hat i$ and $\hat j$ as $1$ because they are unit vectors. Now, to find the direction, find the inverse of $\tan $.
For finding the component of vectors find the angle between the vectors $\vec B$ and $\left( {\hat i + \hat j} \right)$ and then find the product of the angle and vector $\vec B$.
Complete step by step answer:
According to the question, we know that $\hat i$ and $\hat j$ are unit vectors along $x - axis$ and $y - axis$ respectively.
(a)
For finding the magnitude we use the expression –
$\vec A = \sqrt {{a^2} + {b^2} + {c^2}} $
Therefore, for calculating the magnitude of vector $\left( {\hat i + \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( {\hat i} \right)}^2} + {{\left( {\hat j} \right)}^2}} $
We know that, $\hat i.\hat i = 1$ and $\hat j.\hat j = 1$
Therefore, magnitude of vector $\left( {\hat i + \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 $
Hence, the magnitude of the vector $\left( {\hat i + \hat j} \right)$ is $\sqrt 2 $.
Now,
$
\tan \theta = \dfrac{1}{1} \\
\theta = {\tan ^{ - 1}}\left( 1 \right) \\
\theta = {45^ \circ } \\
$
Therefore, the direction is ${45^ \circ }$ to the $x - axis$.
Now, calculating the magnitude of vector $\left( {\hat i - \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 $
Now,
$
\tan \theta = - \dfrac{1}{1} \\
\theta = {\tan ^{ - 1}}\left( { - 1} \right) \\
\theta = - {45^ \circ } \\
$
Hence, the direction of the vector $\left( {\hat i - \hat j} \right)$ is $ - {45^ \circ }$ with the $x - axis$.
(b)
From the question, it is given that –
$\overrightarrow B = 2\hat i + 3\hat j$
Let,
$
\vec a = \hat i + \hat j \\
\vec b = \hat i - \hat j \\
$
To get the component of $\vec B$ along the direction of $\vec a$ we have to find the angle between them –
So, we need to do this by their dot product –
$
\vec B.\vec a = \left| {\vec B} \right|\left| {\vec a} \right|\cos \theta \\
\cos \theta = \dfrac{{\vec B.\vec a}}{{\left| {\vec B} \right|\left| {\vec a} \right|}} \cdots \left( 1 \right) \\
$
Magnitude of vector $\vec B$ -
$\left| {\vec B} \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} = \sqrt {4 + 9} = \sqrt {13} units$
Magnitude of vector $\vec a$ -
$\left| {\vec a} \right| = \sqrt {1 + 1} = \sqrt 2 $
Putting all the values needed for finding the component in equation $\left( 1 \right)$, we get –
$
\therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i + \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 + 3}}{{\sqrt {26} }} \\
\cos \theta = \dfrac{5}{{\sqrt {26} }} \\
$
Hence, the component of $\vec B$ along direction of $\vec a$ is $\dfrac{5}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right)$
Similarly,
To get the component of $\vec B$ along the direction of $\vec b$ we have to find the angle between them –
So, we need to do this by their dot product –
$
\vec B.\vec b = \left| {\vec B} \right|\left| {\vec b} \right|\cos \theta \\
\cos \theta = \dfrac{{\vec B.\vec b}}{{\left| {\vec B} \right|\left| {\vec b} \right|}} \cdots \left( 2 \right) \\
$
Magnitude of vector $\vec b$ -
$\left| {\vec b} \right| = \sqrt {1 + 1} = \sqrt 2 $
Putting all the values needed for finding the component in equation $\left( 2 \right)$, we get –
$
\therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i - \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 - 3}}{{\sqrt {26} }} \\
\cos \theta = \dfrac{{ - 1}}{{\sqrt {26} }} \\
$
Hence, the component of $\vec B$ along direction of $\vec a$ is $\dfrac{{ - 1}}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right)$.
Note: -The magnitude of a vector is the length of the vector. The magnitude of the vector $\vec a$ is denoted as $\left| {\vec a} \right|$.
Formulas for the magnitude of vectors in two dimensions in terms of their coordinates are –
If $\vec a = {a_1}\hat i + {a_2}\hat j$ then, magnitude is –
$\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2} $
For finding the component of vectors find the angle between the vectors $\vec B$ and $\left( {\hat i + \hat j} \right)$ and then find the product of the angle and vector $\vec B$.
Complete step by step answer:
According to the question, we know that $\hat i$ and $\hat j$ are unit vectors along $x - axis$ and $y - axis$ respectively.
(a)
For finding the magnitude we use the expression –
$\vec A = \sqrt {{a^2} + {b^2} + {c^2}} $
Therefore, for calculating the magnitude of vector $\left( {\hat i + \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( {\hat i} \right)}^2} + {{\left( {\hat j} \right)}^2}} $
We know that, $\hat i.\hat i = 1$ and $\hat j.\hat j = 1$
Therefore, magnitude of vector $\left( {\hat i + \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2 $
Hence, the magnitude of the vector $\left( {\hat i + \hat j} \right)$ is $\sqrt 2 $.
Now,
$
\tan \theta = \dfrac{1}{1} \\
\theta = {\tan ^{ - 1}}\left( 1 \right) \\
\theta = {45^ \circ } \\
$
Therefore, the direction is ${45^ \circ }$ to the $x - axis$.
Now, calculating the magnitude of vector $\left( {\hat i - \hat j} \right)$ -
$ \Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 $
Now,
$
\tan \theta = - \dfrac{1}{1} \\
\theta = {\tan ^{ - 1}}\left( { - 1} \right) \\
\theta = - {45^ \circ } \\
$
Hence, the direction of the vector $\left( {\hat i - \hat j} \right)$ is $ - {45^ \circ }$ with the $x - axis$.
(b)
From the question, it is given that –
$\overrightarrow B = 2\hat i + 3\hat j$
Let,
$
\vec a = \hat i + \hat j \\
\vec b = \hat i - \hat j \\
$
To get the component of $\vec B$ along the direction of $\vec a$ we have to find the angle between them –
So, we need to do this by their dot product –
$
\vec B.\vec a = \left| {\vec B} \right|\left| {\vec a} \right|\cos \theta \\
\cos \theta = \dfrac{{\vec B.\vec a}}{{\left| {\vec B} \right|\left| {\vec a} \right|}} \cdots \left( 1 \right) \\
$
Magnitude of vector $\vec B$ -
$\left| {\vec B} \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} = \sqrt {4 + 9} = \sqrt {13} units$
Magnitude of vector $\vec a$ -
$\left| {\vec a} \right| = \sqrt {1 + 1} = \sqrt 2 $
Putting all the values needed for finding the component in equation $\left( 1 \right)$, we get –
$
\therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i + \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 + 3}}{{\sqrt {26} }} \\
\cos \theta = \dfrac{5}{{\sqrt {26} }} \\
$
Hence, the component of $\vec B$ along direction of $\vec a$ is $\dfrac{5}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right)$
Similarly,
To get the component of $\vec B$ along the direction of $\vec b$ we have to find the angle between them –
So, we need to do this by their dot product –
$
\vec B.\vec b = \left| {\vec B} \right|\left| {\vec b} \right|\cos \theta \\
\cos \theta = \dfrac{{\vec B.\vec b}}{{\left| {\vec B} \right|\left| {\vec b} \right|}} \cdots \left( 2 \right) \\
$
Magnitude of vector $\vec b$ -
$\left| {\vec b} \right| = \sqrt {1 + 1} = \sqrt 2 $
Putting all the values needed for finding the component in equation $\left( 2 \right)$, we get –
$
\therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i - \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 - 3}}{{\sqrt {26} }} \\
\cos \theta = \dfrac{{ - 1}}{{\sqrt {26} }} \\
$
Hence, the component of $\vec B$ along direction of $\vec a$ is $\dfrac{{ - 1}}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right)$.
Note: -The magnitude of a vector is the length of the vector. The magnitude of the vector $\vec a$ is denoted as $\left| {\vec a} \right|$.
Formulas for the magnitude of vectors in two dimensions in terms of their coordinates are –
If $\vec a = {a_1}\hat i + {a_2}\hat j$ then, magnitude is –
$\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2} $
Watch videos on
$\hat i$ and $\hat j$ are unit vectors along $x - axis$ and $y - axis$ respectively.
A) What is the magnitude and direction of the vectors $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
B) What are the components of the vectors $\overrightarrow B = 2\hat i + 3\hat j$ along the direction of $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
A) What is the magnitude and direction of the vectors $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
B) What are the components of the vectors $\overrightarrow B = 2\hat i + 3\hat j$ along the direction of $\left( {\hat i + \hat j} \right)$ and $\left( {\hat i - \hat j} \right)$ ?
Motion in a Plane | NCERT EXERCISE 3.19 | Class 11 Phyiscs | Gaurav Tiwari Sir
Subscribe
Share
likes
3.5K Views
1 year ago
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE