Heat of neutralization of oxalic acid is $ - 106.7kJ/mol$ using $NaOH$ hence $\Delta H$ of ${H_2}{C_2}{O_4} \to {C_2}{O_4}^{2 - } + 2{H^ + }$ is,
1) $5.88KJ$
2) $ - 5.88KJ$
3) $ - 13.7kCal$
4) $7.5KJ$
Answer
Verified
410.7k+ views
Hint: We know that the Enthalpy of neutralization is consistently steady for a solid acid and a solid base: this is on the grounds that every single solid acid and solid base are totally ionized in a weak arrangement. Enthalpy changes in neutralization are consistently adverse when acid and salt respond, heat is given out.
Complete answer:
We need to remember that the enthalpy of neutralization is the adjustment of enthalpy that happens when one likes acid and a base goes through a neutralization response to shape water and a salt. It is an exceptional instance of the enthalpy of response. It is characterized as the energy delivered with the development of 1 mole of water.
At the point when a response is done under standard conditions at the temperature of \[298K\] and one atm of pressing factor and one mole of water is framed it is known as the standard enthalpy of neutralization.
Oxalic acid has two ionisable ${H^ + }$ . Subsequently, anticipated warmth of neutralization, in the event that it acts as a solid acid. It is given in the data that Heat of neutralization of oxalic acid is \[-{\text{ }}53.35kJ/mol\] utilizing $NaOH$. Consequently $\Delta H$ \[{H_2}{C_2}{O_4} \leftrightharpoons {C_2}{O_2}^{ + 4} + 2{H^ + }\] is \[7.9kJ\].
Consequently the right answer is D.
Note:
We need to know that the warmth is advanced during neutralization of an acid with antacid. The neutralization response of a solid acid with a solid base is basically the mix of one likeness hydrogen particles with one likeness hydroxyl particles.
Enthalpy of neutralization is the warmth advanced when one gram likeness the acid is totally killed by a base in weakened arrangement.
The compound response is given underneath.
\[{H^ + } + O{H^-} \to {H_2}O + 13.7kcal\]
\[{H^ + }\left( {aq} \right) + C{l^-}\left( {aq} \right) + N{a^ + }\left( {aq} \right) + O{H^-}\left( {aq} \right){\text{ }} \to {\text{ }}Na + \left( {aq} \right) + C{l^-}\left( {aq} \right) + {H_2}O + 13.7kcal\]\[13.7kcal\] of warmth is freed out and is the warmth of neutralization for every single solid acid and bases. Hess in \[1840\] acquired a consistent worth of \[13.7kcal\] as the warmth of neutralization in practically every one of the instances of solid acids and solid bases. This consistency of warmth of neutralization of a solid acid and solid base is clarified based on ionic hypothesis.
Complete answer:
We need to remember that the enthalpy of neutralization is the adjustment of enthalpy that happens when one likes acid and a base goes through a neutralization response to shape water and a salt. It is an exceptional instance of the enthalpy of response. It is characterized as the energy delivered with the development of 1 mole of water.
At the point when a response is done under standard conditions at the temperature of \[298K\] and one atm of pressing factor and one mole of water is framed it is known as the standard enthalpy of neutralization.
Oxalic acid has two ionisable ${H^ + }$ . Subsequently, anticipated warmth of neutralization, in the event that it acts as a solid acid. It is given in the data that Heat of neutralization of oxalic acid is \[-{\text{ }}53.35kJ/mol\] utilizing $NaOH$. Consequently $\Delta H$ \[{H_2}{C_2}{O_4} \leftrightharpoons {C_2}{O_2}^{ + 4} + 2{H^ + }\] is \[7.9kJ\].
Consequently the right answer is D.
Note:
We need to know that the warmth is advanced during neutralization of an acid with antacid. The neutralization response of a solid acid with a solid base is basically the mix of one likeness hydrogen particles with one likeness hydroxyl particles.
Enthalpy of neutralization is the warmth advanced when one gram likeness the acid is totally killed by a base in weakened arrangement.
The compound response is given underneath.
\[{H^ + } + O{H^-} \to {H_2}O + 13.7kcal\]
\[{H^ + }\left( {aq} \right) + C{l^-}\left( {aq} \right) + N{a^ + }\left( {aq} \right) + O{H^-}\left( {aq} \right){\text{ }} \to {\text{ }}Na + \left( {aq} \right) + C{l^-}\left( {aq} \right) + {H_2}O + 13.7kcal\]\[13.7kcal\] of warmth is freed out and is the warmth of neutralization for every single solid acid and bases. Hess in \[1840\] acquired a consistent worth of \[13.7kcal\] as the warmth of neutralization in practically every one of the instances of solid acids and solid bases. This consistency of warmth of neutralization of a solid acid and solid base is clarified based on ionic hypothesis.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE