Answer
Verified
460.8k+ views
Hint: We know that Henry's law is used to determine the unknown pressure quantity and unknown mole fraction at respective temperatures.
Complete step by step answer:
Henry's constant for oxygen dissolved in water is $4.34 \times {10^4}\;{\rm{atm}}$.
The temperature is ${\rm{25^\circ C}}$.
The partial pressure of oxygen in air is ${\rm{0}}{\rm{.2}}\;{\rm{atm}}$.
The henry law can be defined by with the help of vapour pressure and number of mole fraction of gas in respective solutions. The mathematical form of henry law is depicted below.
${\rm{P}} = {{\rm{K}}_{\rm{H}}} \times {\rm{X}}$
Where, ${{\rm{K}}_{\rm{H}}}$ is the henry constant, P is the vapour pressure, and X is the mole fraction.
The mole fraction of oxygen can be calculated with the help of henry haw.
${{\rm{X}}_{{{\rm{o}}_{\rm{2}}}}} = \dfrac{{\rm{P}}}{{{{\rm{K}}_{\rm{H}}}}}$
Substitute the value of henry constant and pressure in the above equation.
$\begin{array}{c}
{{\rm{X}}_{{{\rm{o}}_{\rm{2}}}}} = \dfrac{{0.2\;{\rm{atm}}}}{{4.34 \times {{10}^4}\;{\rm{atm}}}}\\
= 4.6 \times {10^{ - 6}}
\end{array}$
That means $4.6 \times {10^{ - 6}}$ moles of oxygen gas present in one mole of water.
And $4.6 \times {10^{ - 6}}$ moles oxygen in ${\rm{18}}\;{\rm{g}}$ of water.
$\left( {\dfrac{{18}}{{18}} = 1\;{\rm{mole}}} \right)\left( {{\rm{18}}\;{\rm{g/mL}}} \right)$
The density of water is ${\rm{1}}\;{\rm{g/mL}}$.
So, it means ${\rm{18}}\;{\rm{g}} = {\rm{18}}\;{\rm{mL}}$
The conversion of milliliters to liters is done as follows.
$\begin{array}{c}
{\rm{1}}\;{\rm{mL}} = 0.001\;{\rm{L}}\\
{\rm{18}}\;{\rm{mL}} = 18 \times 0.001\;{\rm{L}}\\
= 18 \times {10^{ - 3}}\;{\rm{L}}
\end{array}$
Now, calculate the concentration by using the formula given below.
${\rm{Concentration}} = \dfrac{{{\rm{Moles}}}}{{{\rm{Volume}}}}$
Substitute the respective values of moles and volume in the above equation. We get,
\[\begin{array}{c}
{\rm{Concentration}} = \dfrac{{4.6 \times {{10}^{ - 6}}\;{\rm{mol}}}}{{18 \times {{10}^{ - 3}}\;{\rm{L}}}}\\
= 2.55 \times {10^{ - 4}}\;{\rm{M}}
\end{array}\]
Therefore, the concentration (in moles per litre) of dissolved oxygen in water in equilibrium with air at ${\rm{25^\circ C}}$ is \[2.55 \times {10^{ - 4}}\;{\rm{M}}\].
Note:
The concentration or molarity of the aqueous solution usually be affected by the increasing or decreasing of temperature. The unit representation of the molarity is mol/L.
Complete step by step answer:
Henry's constant for oxygen dissolved in water is $4.34 \times {10^4}\;{\rm{atm}}$.
The temperature is ${\rm{25^\circ C}}$.
The partial pressure of oxygen in air is ${\rm{0}}{\rm{.2}}\;{\rm{atm}}$.
The henry law can be defined by with the help of vapour pressure and number of mole fraction of gas in respective solutions. The mathematical form of henry law is depicted below.
${\rm{P}} = {{\rm{K}}_{\rm{H}}} \times {\rm{X}}$
Where, ${{\rm{K}}_{\rm{H}}}$ is the henry constant, P is the vapour pressure, and X is the mole fraction.
The mole fraction of oxygen can be calculated with the help of henry haw.
${{\rm{X}}_{{{\rm{o}}_{\rm{2}}}}} = \dfrac{{\rm{P}}}{{{{\rm{K}}_{\rm{H}}}}}$
Substitute the value of henry constant and pressure in the above equation.
$\begin{array}{c}
{{\rm{X}}_{{{\rm{o}}_{\rm{2}}}}} = \dfrac{{0.2\;{\rm{atm}}}}{{4.34 \times {{10}^4}\;{\rm{atm}}}}\\
= 4.6 \times {10^{ - 6}}
\end{array}$
That means $4.6 \times {10^{ - 6}}$ moles of oxygen gas present in one mole of water.
And $4.6 \times {10^{ - 6}}$ moles oxygen in ${\rm{18}}\;{\rm{g}}$ of water.
$\left( {\dfrac{{18}}{{18}} = 1\;{\rm{mole}}} \right)\left( {{\rm{18}}\;{\rm{g/mL}}} \right)$
The density of water is ${\rm{1}}\;{\rm{g/mL}}$.
So, it means ${\rm{18}}\;{\rm{g}} = {\rm{18}}\;{\rm{mL}}$
The conversion of milliliters to liters is done as follows.
$\begin{array}{c}
{\rm{1}}\;{\rm{mL}} = 0.001\;{\rm{L}}\\
{\rm{18}}\;{\rm{mL}} = 18 \times 0.001\;{\rm{L}}\\
= 18 \times {10^{ - 3}}\;{\rm{L}}
\end{array}$
Now, calculate the concentration by using the formula given below.
${\rm{Concentration}} = \dfrac{{{\rm{Moles}}}}{{{\rm{Volume}}}}$
Substitute the respective values of moles and volume in the above equation. We get,
\[\begin{array}{c}
{\rm{Concentration}} = \dfrac{{4.6 \times {{10}^{ - 6}}\;{\rm{mol}}}}{{18 \times {{10}^{ - 3}}\;{\rm{L}}}}\\
= 2.55 \times {10^{ - 4}}\;{\rm{M}}
\end{array}\]
Therefore, the concentration (in moles per litre) of dissolved oxygen in water in equilibrium with air at ${\rm{25^\circ C}}$ is \[2.55 \times {10^{ - 4}}\;{\rm{M}}\].
Note:
The concentration or molarity of the aqueous solution usually be affected by the increasing or decreasing of temperature. The unit representation of the molarity is mol/L.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE