
How do you calculate the arctan($0$)?
Answer
456.9k+ views
Hint: To solve this problem we should be aware of the fact that arctan($0$) is at which at which $\tan (x) = 0$ and x belongs to the range, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$(or $ - 90 < x < 90$ if you use degrees).
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.

We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE
