Answer
Verified
425.4k+ views
Hint: To solve this problem we should be aware of the fact that arctan($0$) is at which at which $\tan (x) = 0$ and x belongs to the range, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$(or $ - 90 < x < 90$ if you use degrees).
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Also, $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$.
Complete step by step solution:
We need to solve arctan($0$)
We know that, arctan($0$) is at which at which $\tan (x) = 0$.
Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$
So, we get that, $\tan (x) = 0$only when, $\sin x = 0$
We will use the below unit circle to generalize $\sin x = 0$.
We get that, $\sin x = 0$in the given range of x, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$
$x = 0 + n.2.\pi $or else,
$x = \pi + 2.\pi .n$
In the given case, $x = n.\pi $, where n is an integer.
Only x = 0 satisfies, $ - \dfrac{\pi }{2} < x < \dfrac{\pi }{2}$.
We get, $\sin x = 0$
$\tan (x) = 0$and,
arctan($0$) $ = 0$
Note:
Arctan($0$) is at which $\tan (x) = 0$. Tangent of theta is defined as the ratio of sine of theta to cosine of theta, i.e., $\tan (x) = \dfrac{{\sin x}}{{\cos x}}$. Thus, $\tan (x) = 0$ only when, $\sin x = 0$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE