How do you differentiate \[\dfrac{x}{{\cos x}}\]?
Answer
Verified
437.4k+ views
Hint: In this question, we will differentiate the given expression by using the division rule of differentiation. Use the formula of derivatives and then simplify the answer by using trigonometric ratios to get the final answer.
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Complete step by step answer:
Here we have to differentiate \[\dfrac{x}{{\cos x}}\].
Now differentiating \[\dfrac{x}{{\cos x}}\] w.r.t \[x\], we have
\[\dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = ?\]
We know that if \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
So, we have \[\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
By using the above formula, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\dfrac{{d\left( x \right)}}{{dx}} - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\left( {\cos x} \right)}^2}}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x\left( 1 \right) - x\dfrac{{d\left( {\cos x} \right)}}{{dx}}}}{{{{\cos }^2}x}} \\
\]
We know that \[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]. By substituting this value, we have
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x - x\left( { - \sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\left( {\sin x} \right)}}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x + x\sin x}}{{{{\cos }^2}x}} \\
\]
Splitting the terms on right-hand side, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{{\cos x}}{{{{\cos }^2}x}} + \dfrac{{x\sin x}}{{{{\cos }^2}x}}\]
Cancelling the common terms, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \dfrac{1}{{\cos x}} + \dfrac{{x\sin x}}{{\cos x}}\dfrac{1}{{\cos x}}\]
We know that \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{{\sin x}}{{\cos x}} = \tan x\]. Substituting this value, we have
\[\therefore \dfrac{d}{{dx}}\left( {\dfrac{x}{{\cos x}}} \right) = \sec x + x\tan x\sec x\]
Thus, the derivative of \[\dfrac{x}{{\cos x}}\] is \[\sec x + x\tan x\sec x\].
Note: In mathematics, division rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let \[f\left( x \right)\] and \[g\left( x \right)\] are functions of \[x\] then derivative of \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] with respective of \[x\] is given by \[\dfrac{{g\left( x \right)\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}} - f\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}}}{{{{\left( {g\left( x \right)} \right)}^2}}}\].
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE