
How do you differentiate $y = \ln (3x)$?
Answer
562.5k+ views
Hint: Here there is no direct formula for calculating the derivative of the given term; we will use the chain rule to find the derivative of the equation. On doing some simplification we get the required answer.
Complete step-by-step solution:
We have the given equation as:
$ \Rightarrow y = \ln (3x)$
Now since there is no direct formula for calculating the derivative of the given expression, we will use the chain rule by writing the term as:
$ \Rightarrow y' = \dfrac{d}{{dx}}\ln (3x)$
In this question we will consider $g(x) = 3x$
Now we know that the formula for the chain rule is: $F'(x) = f'(g(x))g'(x)$
Now we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}$, therefore on using the chain rule, we get:
$ \Rightarrow y' = \dfrac{1}{{3x}}\dfrac{d}{{dx}}(3x)$.
Now we know that a constant is not the part of the derivative, therefore on taking $3$ out we can write the equation as:
$ \Rightarrow y' = \dfrac{{1 \times 3}}{{3x}}\dfrac{d}{{dx}}(x)$
Now on simplifying the equation, we get:
$ \Rightarrow y' = \dfrac{1}{x}\dfrac{d}{{dx}}(x)$
Now we know that $\dfrac{d}{{dx}}x = 1$, therefore on differentiating, we get:
$ \Rightarrow y' = \dfrac{1}{x} \times 1$
On simplifying, we get:
$ \Rightarrow y' = \dfrac{1}{x}$, which is the required solution.
Note: All the basic derivative formulas should be remembered to solve these types of sums, also whenever there is a constant value in multiplication in a derivative, it should be taken out of the derivative.
The inverse of the derivative is the integration and vice versa. If the derivative of a term $a$ is $b$, then the integration of the term $b$ will be $a$.
The term $\ln 3x$ represents the natural log of the term, the natural log has a base of $e$. The other most commonly used log is log to the base $10$. It is written as ${\log _{10}}x$. The base represents the number to which the log value should be raised to get the original value.
Complete step-by-step solution:
We have the given equation as:
$ \Rightarrow y = \ln (3x)$
Now since there is no direct formula for calculating the derivative of the given expression, we will use the chain rule by writing the term as:
$ \Rightarrow y' = \dfrac{d}{{dx}}\ln (3x)$
In this question we will consider $g(x) = 3x$
Now we know that the formula for the chain rule is: $F'(x) = f'(g(x))g'(x)$
Now we know that $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}$, therefore on using the chain rule, we get:
$ \Rightarrow y' = \dfrac{1}{{3x}}\dfrac{d}{{dx}}(3x)$.
Now we know that a constant is not the part of the derivative, therefore on taking $3$ out we can write the equation as:
$ \Rightarrow y' = \dfrac{{1 \times 3}}{{3x}}\dfrac{d}{{dx}}(x)$
Now on simplifying the equation, we get:
$ \Rightarrow y' = \dfrac{1}{x}\dfrac{d}{{dx}}(x)$
Now we know that $\dfrac{d}{{dx}}x = 1$, therefore on differentiating, we get:
$ \Rightarrow y' = \dfrac{1}{x} \times 1$
On simplifying, we get:
$ \Rightarrow y' = \dfrac{1}{x}$, which is the required solution.
Note: All the basic derivative formulas should be remembered to solve these types of sums, also whenever there is a constant value in multiplication in a derivative, it should be taken out of the derivative.
The inverse of the derivative is the integration and vice versa. If the derivative of a term $a$ is $b$, then the integration of the term $b$ will be $a$.
The term $\ln 3x$ represents the natural log of the term, the natural log has a base of $e$. The other most commonly used log is log to the base $10$. It is written as ${\log _{10}}x$. The base represents the number to which the log value should be raised to get the original value.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

