Answer
Verified
431.1k+ views
Hint: We explain the concept of derivation of a dependent variable with respect to an independent variable. We first find the formula for the derivation for ${{n}^{th}}$ power of a variable x where $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. We place the value for $n=\dfrac{1}{2}$. We get the solution for the derivative of $y=4\sqrt{x}$. We also explain the theorem with the help of the first order derivative.
Complete step by step answer:
Differentiation, the fundamental operations in calculus deals with the rate at which the dependent variable changes with respect to the independent variable. The measurement quantity of its rate of change is known as derivative or differential coefficients. We find the increment of those variable for small changes. We mathematically express as $\dfrac{dy}{dx}$ where $y=f\left( x \right)$.
The formula of derivation for ${{n}^{th}}$ power of a variable x is $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. The condition being $n\in \mathbb{R}\backslash \left\{ 0 \right\}$.
We know in case of indices we have the identity of \[\sqrt[m]{a}={{a}^{\dfrac{1}{m}}}\].
For our given function $y=4\sqrt{x}$, we can convert it to $f\left( x \right)=4\sqrt{x}=4{{x}^{\dfrac{1}{2}}}$.
The value of n is $\dfrac{1}{2}$. We apply the theorem and get $\dfrac{df}{dx}=\dfrac{d}{dx}\left( 4{{x}^{\dfrac{1}{2}}} \right)=4\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)=4\left( \dfrac{1}{2} \right){{x}^{\dfrac{1}{2}-1}}$.
Simplifying the equation, we get $\dfrac{df}{dx}={{f}^{'}}\left( x \right)=2{{x}^{-\dfrac{1}{2}}}=\dfrac{2}{\sqrt{x}}$.
Therefore, the derivative of the function $y=4\sqrt{x}$ is $\dfrac{2}{\sqrt{x}}$.
Note: If the ratio of $\dfrac{\Delta y}{\Delta x}$ tends to a definite finite limit when \[\Delta x\to 0\], then the limiting value obtained by this can also be found by first order derivative. We can also apply first order derivative theorem to get the differentiated value of ${{x}^{\dfrac{1}{2}}}$.
We know that $\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$. Here $f\left( x \right)={{x}^{n}}$. Also, $f\left( x+h \right)={{\left( x+h \right)}^{n}}$. We assume $x+h=u$ which gives $f\left( u \right)={{\left( u \right)}^{n}}$ and $h=u-x$. As $h\to 0$ we get $u\to x$.
So, $\dfrac{df}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{u\to x}{\mathop{\lim }}\,\dfrac{{{u}^{n}}-{{x}^{n}}}{u-x}$.
We know the limit value $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n-1}}$.
Therefore, \[\dfrac{df}{dx}=\underset{u\to x}{\mathop{\lim }}\,\dfrac{{{u}^{n}}-{{x}^{n}}}{u-x}=n{{x}^{n-1}}\].
Complete step by step answer:
Differentiation, the fundamental operations in calculus deals with the rate at which the dependent variable changes with respect to the independent variable. The measurement quantity of its rate of change is known as derivative or differential coefficients. We find the increment of those variable for small changes. We mathematically express as $\dfrac{dy}{dx}$ where $y=f\left( x \right)$.
The formula of derivation for ${{n}^{th}}$ power of a variable x is $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. The condition being $n\in \mathbb{R}\backslash \left\{ 0 \right\}$.
We know in case of indices we have the identity of \[\sqrt[m]{a}={{a}^{\dfrac{1}{m}}}\].
For our given function $y=4\sqrt{x}$, we can convert it to $f\left( x \right)=4\sqrt{x}=4{{x}^{\dfrac{1}{2}}}$.
The value of n is $\dfrac{1}{2}$. We apply the theorem and get $\dfrac{df}{dx}=\dfrac{d}{dx}\left( 4{{x}^{\dfrac{1}{2}}} \right)=4\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)=4\left( \dfrac{1}{2} \right){{x}^{\dfrac{1}{2}-1}}$.
Simplifying the equation, we get $\dfrac{df}{dx}={{f}^{'}}\left( x \right)=2{{x}^{-\dfrac{1}{2}}}=\dfrac{2}{\sqrt{x}}$.
Therefore, the derivative of the function $y=4\sqrt{x}$ is $\dfrac{2}{\sqrt{x}}$.
Note: If the ratio of $\dfrac{\Delta y}{\Delta x}$ tends to a definite finite limit when \[\Delta x\to 0\], then the limiting value obtained by this can also be found by first order derivative. We can also apply first order derivative theorem to get the differentiated value of ${{x}^{\dfrac{1}{2}}}$.
We know that $\dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$. Here $f\left( x \right)={{x}^{n}}$. Also, $f\left( x+h \right)={{\left( x+h \right)}^{n}}$. We assume $x+h=u$ which gives $f\left( u \right)={{\left( u \right)}^{n}}$ and $h=u-x$. As $h\to 0$ we get $u\to x$.
So, $\dfrac{df}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{u\to x}{\mathop{\lim }}\,\dfrac{{{u}^{n}}-{{x}^{n}}}{u-x}$.
We know the limit value $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n-1}}$.
Therefore, \[\dfrac{df}{dx}=\underset{u\to x}{\mathop{\lim }}\,\dfrac{{{u}^{n}}-{{x}^{n}}}{u-x}=n{{x}^{n-1}}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE