Answer
Verified
429.9k+ views
Hint: Here in this question we are going to solve this function. The function is of the form of a logarithmic function. The logarithmic function is represented as \[{\log _b}a\] , where b is a base and a is a number either it is a fraction or a whole number. By using the properties of logarithmic functions, we are going to simplify the question.
Complete step by step solution:
The logarithmic function is an inverse of exponential function. Here we have to solve the above logarithmic function. This logarithmic function contains 216 as a base. Hence by applying the properties of logarithmic functions we solve this function.
Now consider the given function \[{\log _{216}}6\]
When the logarithmic function is defined as \[{\log _b}a\] , by the property of logarithmic function it is written as \[\dfrac{{\log a}}{{\log b}}\]
Therefore the given function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log 216}}\]
Since it is just log so it is a common logarithm.
Let we factorise the number 216.
Therefore the number 216 is written as \[6 \times 6 \times 6\] . The number 6 is multiplied thrice. Therefore the number is written in the form of exponential. So it is written as \[{6^3}\]
So the above function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log {6^3}}}\]
In the denominator of the above function we have the log function is in the form \[\log {a^n}\] , so we have property \[\log {a^n} = n\log a\] . By applying the property we have
\[ \Rightarrow \dfrac{{\log 6}}{{3\log 6}}\]
In the numerator and the denominator we have log6 so we can cancel it. So we have
\[ \Rightarrow \dfrac{1}{3}\]
Hence we have evaluated the function and obtained an answer.
Therefore \[{\log _{216}}6 = \dfrac{1}{3}\]
So, the correct answer is “$\dfrac{1}{3}$”.
Note: The logarithmic functions have many properties. These properties are based on the exponential number and on the arithmetic operation like addition, subtraction, multiplication and division. So by using these properties we can solve the logarithmic properties. We have different values of logarithms for different base values.
Complete step by step solution:
The logarithmic function is an inverse of exponential function. Here we have to solve the above logarithmic function. This logarithmic function contains 216 as a base. Hence by applying the properties of logarithmic functions we solve this function.
Now consider the given function \[{\log _{216}}6\]
When the logarithmic function is defined as \[{\log _b}a\] , by the property of logarithmic function it is written as \[\dfrac{{\log a}}{{\log b}}\]
Therefore the given function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log 216}}\]
Since it is just log so it is a common logarithm.
Let we factorise the number 216.
Therefore the number 216 is written as \[6 \times 6 \times 6\] . The number 6 is multiplied thrice. Therefore the number is written in the form of exponential. So it is written as \[{6^3}\]
So the above function is written as
\[ \Rightarrow \dfrac{{\log 6}}{{\log {6^3}}}\]
In the denominator of the above function we have the log function is in the form \[\log {a^n}\] , so we have property \[\log {a^n} = n\log a\] . By applying the property we have
\[ \Rightarrow \dfrac{{\log 6}}{{3\log 6}}\]
In the numerator and the denominator we have log6 so we can cancel it. So we have
\[ \Rightarrow \dfrac{1}{3}\]
Hence we have evaluated the function and obtained an answer.
Therefore \[{\log _{216}}6 = \dfrac{1}{3}\]
So, the correct answer is “$\dfrac{1}{3}$”.
Note: The logarithmic functions have many properties. These properties are based on the exponential number and on the arithmetic operation like addition, subtraction, multiplication and division. So by using these properties we can solve the logarithmic properties. We have different values of logarithms for different base values.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE