Answer
Verified
431.4k+ views
Hint: Evaluating logarithmic equations we have to first check for the logarithm’s base. In this case we have the logarithm base as 9, so we will express the number given as a power of the base of the logarithm. Then using the logarithm formula, we will solve the equation.
Complete step-by-step solution:
Logarithm equation can be explained as an equation consisting of logarithm in the expression. To solve this expression, we will use the logarithm formula which is as follows:
Suppose we have, \[{{a}^{x}}=b\], then using logarithm to write this expression we have,
\[{{\log }_{a}}b=x\]
Here, we have ‘a’ as the logarithm base. We can say that, ‘x’ is the logarithm of ‘b’ to the base ‘a’.
Let us understand this property using an example.
For example – we know that the product of two written thrice is eight. It can be written as:
\[{{2}^{3}}=8\]
If we use logarithm in the above expression, we can rewrite it as:
\[{{\log }_{2}}8=3\]
So we have the base of the logarithm as 2, and since 8 can be written as two raised to the power 3. We get the following answer as 3.
\[\Rightarrow {{\log }_{2}}{{2}^{3}}=3{{\log }_{2}}2=3\], as \[{{\log }_{2}}2=1\]
According to the question we have, we have to solve for \[{{\log }_{9}}729\],
We can see here that the base of the logarithm is 9, so we will write the number 729 as a power of 9. It can be written as:
\[729=9\times 9\times 9={{9}^{3}}\]
Therefore, we have
\[{{\log }_{9}}729\]
\[\Rightarrow {{\log }_{9}}{{9}^{3}}=3{{\log }_{9}}9=3\]
Therefore, \[{{\log }_{9}}729=3\]
We can confirm this as \[{{\log }_{9}}729=3\] would mean, \[{{9}^{3}}=729\] and which is correct.
Note: We can also solve the equation by taking,
\[{{\log }_{9}}729=y\]
As we know that, \[{{\log }_{a}}b=x\] can also be written as \[{{a}^{x}}=b\]. So, we have
\[{{9}^{y}}=729\]
Writing the above expression as a power of same bases, we can have
\[\Rightarrow {{({{3}^{2}})}^{y}}={{(3)}^{6}}\]
\[\Rightarrow {{(3)}^{2y}}={{(3)}^{6}}\]
Since, the bases are same, we can equate their powers, we get
\[\Rightarrow 2y=6\]
\[\Rightarrow y=3\]
Therefore, \[{{\log }_{9}}729=3\]
Complete step-by-step solution:
Logarithm equation can be explained as an equation consisting of logarithm in the expression. To solve this expression, we will use the logarithm formula which is as follows:
Suppose we have, \[{{a}^{x}}=b\], then using logarithm to write this expression we have,
\[{{\log }_{a}}b=x\]
Here, we have ‘a’ as the logarithm base. We can say that, ‘x’ is the logarithm of ‘b’ to the base ‘a’.
Let us understand this property using an example.
For example – we know that the product of two written thrice is eight. It can be written as:
\[{{2}^{3}}=8\]
If we use logarithm in the above expression, we can rewrite it as:
\[{{\log }_{2}}8=3\]
So we have the base of the logarithm as 2, and since 8 can be written as two raised to the power 3. We get the following answer as 3.
\[\Rightarrow {{\log }_{2}}{{2}^{3}}=3{{\log }_{2}}2=3\], as \[{{\log }_{2}}2=1\]
According to the question we have, we have to solve for \[{{\log }_{9}}729\],
We can see here that the base of the logarithm is 9, so we will write the number 729 as a power of 9. It can be written as:
\[729=9\times 9\times 9={{9}^{3}}\]
Therefore, we have
\[{{\log }_{9}}729\]
\[\Rightarrow {{\log }_{9}}{{9}^{3}}=3{{\log }_{9}}9=3\]
Therefore, \[{{\log }_{9}}729=3\]
We can confirm this as \[{{\log }_{9}}729=3\] would mean, \[{{9}^{3}}=729\] and which is correct.
Note: We can also solve the equation by taking,
\[{{\log }_{9}}729=y\]
As we know that, \[{{\log }_{a}}b=x\] can also be written as \[{{a}^{x}}=b\]. So, we have
\[{{9}^{y}}=729\]
Writing the above expression as a power of same bases, we can have
\[\Rightarrow {{({{3}^{2}})}^{y}}={{(3)}^{6}}\]
\[\Rightarrow {{(3)}^{2y}}={{(3)}^{6}}\]
Since, the bases are same, we can equate their powers, we get
\[\Rightarrow 2y=6\]
\[\Rightarrow y=3\]
Therefore, \[{{\log }_{9}}729=3\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE