Answer
Verified
431.4k+ views
Hint: We need to find the method to find the value of \[\sin 5\pi \]. Trigonometry is a part of calculus and the basic ratios of trigonometric are sine and cosine which have their application in sound and lightwave theories. The trigonometric have vast applications in naval engineering such as determining the height of the wave and the tide in the ocean.
Complete step by step solution:
In this question, we have given a trigonometric term \[\sin 5\pi \] and we need to obtain the value of the trigonometric term at $5\pi $.
To obtain the value of the trigonometric term we will write the angle as a sum or difference.
Here, \[5\pi \] is written as \[4\pi + \pi \].
Now we will substitute \[4\pi + \pi \] in place of \[5\pi \] in the trigonometric term \[\sin 5\pi \].
This gives,
\[ \Rightarrow \sin \left( {4\pi + \pi } \right)\]
Here, we will calculate the value of \[\sin \pi \] is written as,
\[\sin \pi = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
Since, the value of \[\sin \left( {90 + x} \right) = \cos x\].
Then, \[\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{2}} \right) = \cos \dfrac{\pi }{2}\]
The value of \[\cos \dfrac{\pi }{2} = 0\]
Thus, the value of \[\sin \pi = 0\].
The value of \[\sin \pi \]is zero, as the angle pi is revolved four more times the angle is \[5\pi \] which again sums to \[0\].
Thus, the value of \[\sin 5\pi = 0\].
Note:
As we know that the sine angle formula is used to determine the ratio of perpendicular to height in a right-angle triangle. It is also used to determine the missing sides and the angles in other types of triangles.
Complete step by step solution:
In this question, we have given a trigonometric term \[\sin 5\pi \] and we need to obtain the value of the trigonometric term at $5\pi $.
To obtain the value of the trigonometric term we will write the angle as a sum or difference.
Here, \[5\pi \] is written as \[4\pi + \pi \].
Now we will substitute \[4\pi + \pi \] in place of \[5\pi \] in the trigonometric term \[\sin 5\pi \].
This gives,
\[ \Rightarrow \sin \left( {4\pi + \pi } \right)\]
Here, we will calculate the value of \[\sin \pi \] is written as,
\[\sin \pi = \sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{2}} \right)\]
Since, the value of \[\sin \left( {90 + x} \right) = \cos x\].
Then, \[\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{2}} \right) = \cos \dfrac{\pi }{2}\]
The value of \[\cos \dfrac{\pi }{2} = 0\]
Thus, the value of \[\sin \pi = 0\].
The value of \[\sin \pi \]is zero, as the angle pi is revolved four more times the angle is \[5\pi \] which again sums to \[0\].
Thus, the value of \[\sin 5\pi = 0\].
Note:
As we know that the sine angle formula is used to determine the ratio of perpendicular to height in a right-angle triangle. It is also used to determine the missing sides and the angles in other types of triangles.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE