Answer
Verified
431.4k+ views
Hint: In this question we need to find the factor of algebraic expression $16{x^4} - 81{y^4}$. Given algebraic expression is of two variables $x$ and $y$. To solve this question we need to use the following basic algebraic identities such as ${a^2} - {b^2} = (a + b)(a - b)$. To solve this question we need to know the square root of a number or how to find the square root of a number. To solve this we also need to know the laws of exponents.
Complete step by step solution:
Let us try to solve this question in which we are asked to find the factor of the given algebraic expression $16{x^4} - 81{y^4}$. To find the factors of the equation we manipulate the given algebraic expression by using our knowledge of exponents, so that we can apply the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$. So, let’s come back to the question.
We have to find factor of $16{x^4} - 81{y^4}$, this can be written as
$16{x^4} - 81{y^4} = {(4{x^2})^2} - {(9{y^2})^2}$ $(1)$
Because we know that from law of exponents ${a^{b \cdot c}} = {({a^b})^c}$ and also we know that $16 = {4^2}$ and $81 = {9^2}$
Now, applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation $(1)$, we get
${(4{x^2})^2} - {(9{x^2})^2} = (4{x^2} - 9{x^2})(4{x^2} + 9{y^2})$ $(2)$
Now, again applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation (2), we get
$(4{x^2} - 9{x^2})(4{x^2} + 9{y^2}) = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$ $(3)$
Equation $(3)$ cannot be further factorized because this equation has no more linear factors.
Hence the factor of algebraic expression $16{x^4} - 81{y^4} = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$.
Note: For solving this type of question in which we are asked to find the factor of algebraic expression having the knowledge of some basic algebraic identities are must such as ${a^2} - {b^2} = (a + b)(a - b)$,
${(a + b)^2} = {a^2} + 2ab + {b^2}$ etc.
To solve these types of questions we just have to break the expression using knowledge of exponents and apply known algebraic identities.
Complete step by step solution:
Let us try to solve this question in which we are asked to find the factor of the given algebraic expression $16{x^4} - 81{y^4}$. To find the factors of the equation we manipulate the given algebraic expression by using our knowledge of exponents, so that we can apply the algebraic identity ${a^2} - {b^2} = (a + b)(a - b)$. So, let’s come back to the question.
We have to find factor of $16{x^4} - 81{y^4}$, this can be written as
$16{x^4} - 81{y^4} = {(4{x^2})^2} - {(9{y^2})^2}$ $(1)$
Because we know that from law of exponents ${a^{b \cdot c}} = {({a^b})^c}$ and also we know that $16 = {4^2}$ and $81 = {9^2}$
Now, applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation $(1)$, we get
${(4{x^2})^2} - {(9{x^2})^2} = (4{x^2} - 9{x^2})(4{x^2} + 9{y^2})$ $(2)$
Now, again applying the identity ${a^2} - {b^2} = (a + b)(a - b)$ in equation (2), we get
$(4{x^2} - 9{x^2})(4{x^2} + 9{y^2}) = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$ $(3)$
Equation $(3)$ cannot be further factorized because this equation has no more linear factors.
Hence the factor of algebraic expression $16{x^4} - 81{y^4} = (2x - 3y)(2x + 3y)(4{x^2} + 9{y^2})$.
Note: For solving this type of question in which we are asked to find the factor of algebraic expression having the knowledge of some basic algebraic identities are must such as ${a^2} - {b^2} = (a + b)(a - b)$,
${(a + b)^2} = {a^2} + 2ab + {b^2}$ etc.
To solve these types of questions we just have to break the expression using knowledge of exponents and apply known algebraic identities.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE