Answer
Verified
431.1k+ views
Hint: As, quadratic equation are those equation in which maximum power of variable is $2.$
It is in form of $a{{x}^{2}}+bx+c=0$
Where, $a$ is co-efficient of $x$
$b$ is co-efficient of $x$
And $c$ is constant.
Here, value of $a=1,b=-11,c=24$
For factoring, we need two numbers which when added or subtracted together to form the product of $'a'\And 'c'$
Like, ${{x}^{2}}+2x-2=0$
$a=1,b=2,c=2$
So, $ac=\left( 1\times 2 \right)=2$
So, factor or number will be $2$ and $1$
Hence, we can write it as,
${{x}^{2}}+x-2x-2=0$
Apply this concept to factorize the given expression.
Complete step by step solution:
As per data given in the question,
We have,
$21{{x}^{2}}+55x+14=0$
As we know that,
General form of a quadratic equation is,
$a{{x}^{2}}+bx+c=0$
Where, $a\And b$ are coefficients of ${{x}^{2}}$ and $x$ respectively.
And $c$ is any constant.
So, after comparing the given equation with the general equation of the quadratic equation.
We will get,
$a=21,b=55,c=14$
So, value of product of $a$ and $c$ will be $=\left( a\times c \right)=\left( 21\times 14 \right)=294$
As for solving the above equation,
We need pairs of such numbers which when multiplied result to $294$
And when added/subtracted together gives $55.$
So,
Factorizing $294,$we will get,
$294=2,147\And \left( -2,-147 \right)$
$294=3,98\And \left( -3,-98 \right)$
$294=6,49\And \left( -6,-49 \right)$
$294=7,42\And \left( -7,-42 \right)$
Hence, from above factorization,
We can conclude that,
Only pairs of numbers $\left( 6,49 \right)$ and $\left( -6,-49 \right)$ can gives a value of $55.$
As, we need a positive value of $'b'$
So, we will consider number $6,49$ only
Hence,
Above equation becomes,
$21{{x}^{2}}+55x+14=0$
$\Rightarrow 21{{x}^{2}}+6x+49+14=0$
Taking $3$ as common from first two digits and $7$ as common from last two digits,
We will get,
$21{{x}^{2}}+6x+49x+14=0$
$3x\left( 7x+2 \right)+7\left( 7x+2 \right)=0$
$\left( 3x+7 \right)\left( 7x+2 \right)=0$
Hence, In factorization form,
$21{{x}^{2}}+55x+14=0$ can be written as $\left( 3x+7 \right)\left( 7x+2 \right)$
Additional Information:
Let if we have to factorize,
${{x}^{2}}+3x+2=0$
Here, sign of all co-efficient are $+ve$
So,
$ac=2\times 1=2$
Hence, two number can be, $\left( 2,1 \right)$ and $\left( -1,-2 \right)$
But due to positive sign of $''b''$ we will consider number as $\left( 2,1 \right)$
$+\times +=+$
$+\times -=-$
$-\times +=-$
$-\times -=+$
Note: Let we have to factorize the equation ${{x}^{2}}-11x+24=0,$ As, in the given equation,
${{x}^{2}}-11x+24=0$
We will not consider $\left( 8,3 \right)$ as pairs of numbers, as here $''b''$ is negative and $''c''$ is positive, so we need
It is in form of $a{{x}^{2}}+bx+c=0$
Where, $a$ is co-efficient of $x$
$b$ is co-efficient of $x$
And $c$ is constant.
Here, value of $a=1,b=-11,c=24$
For factoring, we need two numbers which when added or subtracted together to form the product of $'a'\And 'c'$
Like, ${{x}^{2}}+2x-2=0$
$a=1,b=2,c=2$
So, $ac=\left( 1\times 2 \right)=2$
So, factor or number will be $2$ and $1$
Hence, we can write it as,
${{x}^{2}}+x-2x-2=0$
Apply this concept to factorize the given expression.
Complete step by step solution:
As per data given in the question,
We have,
$21{{x}^{2}}+55x+14=0$
As we know that,
General form of a quadratic equation is,
$a{{x}^{2}}+bx+c=0$
Where, $a\And b$ are coefficients of ${{x}^{2}}$ and $x$ respectively.
And $c$ is any constant.
So, after comparing the given equation with the general equation of the quadratic equation.
We will get,
$a=21,b=55,c=14$
So, value of product of $a$ and $c$ will be $=\left( a\times c \right)=\left( 21\times 14 \right)=294$
As for solving the above equation,
We need pairs of such numbers which when multiplied result to $294$
And when added/subtracted together gives $55.$
So,
Factorizing $294,$we will get,
$294=2,147\And \left( -2,-147 \right)$
$294=3,98\And \left( -3,-98 \right)$
$294=6,49\And \left( -6,-49 \right)$
$294=7,42\And \left( -7,-42 \right)$
Hence, from above factorization,
We can conclude that,
Only pairs of numbers $\left( 6,49 \right)$ and $\left( -6,-49 \right)$ can gives a value of $55.$
As, we need a positive value of $'b'$
So, we will consider number $6,49$ only
Hence,
Above equation becomes,
$21{{x}^{2}}+55x+14=0$
$\Rightarrow 21{{x}^{2}}+6x+49+14=0$
Taking $3$ as common from first two digits and $7$ as common from last two digits,
We will get,
$21{{x}^{2}}+6x+49x+14=0$
$3x\left( 7x+2 \right)+7\left( 7x+2 \right)=0$
$\left( 3x+7 \right)\left( 7x+2 \right)=0$
Hence, In factorization form,
$21{{x}^{2}}+55x+14=0$ can be written as $\left( 3x+7 \right)\left( 7x+2 \right)$
Additional Information:
Let if we have to factorize,
${{x}^{2}}+3x+2=0$
Here, sign of all co-efficient are $+ve$
So,
$ac=2\times 1=2$
Hence, two number can be, $\left( 2,1 \right)$ and $\left( -1,-2 \right)$
But due to positive sign of $''b''$ we will consider number as $\left( 2,1 \right)$
$+\times +=+$
$+\times -=-$
$-\times +=-$
$-\times -=+$
Note: Let we have to factorize the equation ${{x}^{2}}-11x+24=0,$ As, in the given equation,
${{x}^{2}}-11x+24=0$
We will not consider $\left( 8,3 \right)$ as pairs of numbers, as here $''b''$ is negative and $''c''$ is positive, so we need
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE