
How do you factor,
$21{{x}^{2}}+55x+14=0?$
Answer
553.5k+ views
Hint: As, quadratic equation are those equation in which maximum power of variable is $2.$
It is in form of $a{{x}^{2}}+bx+c=0$
Where, $a$ is co-efficient of $x$
$b$ is co-efficient of $x$
And $c$ is constant.
Here, value of $a=1,b=-11,c=24$
For factoring, we need two numbers which when added or subtracted together to form the product of $'a'\And 'c'$
Like, ${{x}^{2}}+2x-2=0$
$a=1,b=2,c=2$
So, $ac=\left( 1\times 2 \right)=2$
So, factor or number will be $2$ and $1$
Hence, we can write it as,
${{x}^{2}}+x-2x-2=0$
Apply this concept to factorize the given expression.
Complete step by step solution:
As per data given in the question,
We have,
$21{{x}^{2}}+55x+14=0$
As we know that,
General form of a quadratic equation is,
$a{{x}^{2}}+bx+c=0$
Where, $a\And b$ are coefficients of ${{x}^{2}}$ and $x$ respectively.
And $c$ is any constant.
So, after comparing the given equation with the general equation of the quadratic equation.
We will get,
$a=21,b=55,c=14$
So, value of product of $a$ and $c$ will be $=\left( a\times c \right)=\left( 21\times 14 \right)=294$
As for solving the above equation,
We need pairs of such numbers which when multiplied result to $294$
And when added/subtracted together gives $55.$
So,
Factorizing $294,$we will get,
$294=2,147\And \left( -2,-147 \right)$
$294=3,98\And \left( -3,-98 \right)$
$294=6,49\And \left( -6,-49 \right)$
$294=7,42\And \left( -7,-42 \right)$
Hence, from above factorization,
We can conclude that,
Only pairs of numbers $\left( 6,49 \right)$ and $\left( -6,-49 \right)$ can gives a value of $55.$
As, we need a positive value of $'b'$
So, we will consider number $6,49$ only
Hence,
Above equation becomes,
$21{{x}^{2}}+55x+14=0$
$\Rightarrow 21{{x}^{2}}+6x+49+14=0$
Taking $3$ as common from first two digits and $7$ as common from last two digits,
We will get,
$21{{x}^{2}}+6x+49x+14=0$
$3x\left( 7x+2 \right)+7\left( 7x+2 \right)=0$
$\left( 3x+7 \right)\left( 7x+2 \right)=0$
Hence, In factorization form,
$21{{x}^{2}}+55x+14=0$ can be written as $\left( 3x+7 \right)\left( 7x+2 \right)$
Additional Information:
Let if we have to factorize,
${{x}^{2}}+3x+2=0$
Here, sign of all co-efficient are $+ve$
So,
$ac=2\times 1=2$
Hence, two number can be, $\left( 2,1 \right)$ and $\left( -1,-2 \right)$
But due to positive sign of $''b''$ we will consider number as $\left( 2,1 \right)$
$+\times +=+$
$+\times -=-$
$-\times +=-$
$-\times -=+$
Note: Let we have to factorize the equation ${{x}^{2}}-11x+24=0,$ As, in the given equation,
${{x}^{2}}-11x+24=0$
We will not consider $\left( 8,3 \right)$ as pairs of numbers, as here $''b''$ is negative and $''c''$ is positive, so we need
It is in form of $a{{x}^{2}}+bx+c=0$
Where, $a$ is co-efficient of $x$
$b$ is co-efficient of $x$
And $c$ is constant.
Here, value of $a=1,b=-11,c=24$
For factoring, we need two numbers which when added or subtracted together to form the product of $'a'\And 'c'$
Like, ${{x}^{2}}+2x-2=0$
$a=1,b=2,c=2$
So, $ac=\left( 1\times 2 \right)=2$
So, factor or number will be $2$ and $1$
Hence, we can write it as,
${{x}^{2}}+x-2x-2=0$
Apply this concept to factorize the given expression.
Complete step by step solution:
As per data given in the question,
We have,
$21{{x}^{2}}+55x+14=0$
As we know that,
General form of a quadratic equation is,
$a{{x}^{2}}+bx+c=0$
Where, $a\And b$ are coefficients of ${{x}^{2}}$ and $x$ respectively.
And $c$ is any constant.
So, after comparing the given equation with the general equation of the quadratic equation.
We will get,
$a=21,b=55,c=14$
So, value of product of $a$ and $c$ will be $=\left( a\times c \right)=\left( 21\times 14 \right)=294$
As for solving the above equation,
We need pairs of such numbers which when multiplied result to $294$
And when added/subtracted together gives $55.$
So,
Factorizing $294,$we will get,
$294=2,147\And \left( -2,-147 \right)$
$294=3,98\And \left( -3,-98 \right)$
$294=6,49\And \left( -6,-49 \right)$
$294=7,42\And \left( -7,-42 \right)$
Hence, from above factorization,
We can conclude that,
Only pairs of numbers $\left( 6,49 \right)$ and $\left( -6,-49 \right)$ can gives a value of $55.$
As, we need a positive value of $'b'$
So, we will consider number $6,49$ only
Hence,
Above equation becomes,
$21{{x}^{2}}+55x+14=0$
$\Rightarrow 21{{x}^{2}}+6x+49+14=0$
Taking $3$ as common from first two digits and $7$ as common from last two digits,
We will get,
$21{{x}^{2}}+6x+49x+14=0$
$3x\left( 7x+2 \right)+7\left( 7x+2 \right)=0$
$\left( 3x+7 \right)\left( 7x+2 \right)=0$
Hence, In factorization form,
$21{{x}^{2}}+55x+14=0$ can be written as $\left( 3x+7 \right)\left( 7x+2 \right)$
Additional Information:
Let if we have to factorize,
${{x}^{2}}+3x+2=0$
Here, sign of all co-efficient are $+ve$
So,
$ac=2\times 1=2$
Hence, two number can be, $\left( 2,1 \right)$ and $\left( -1,-2 \right)$
But due to positive sign of $''b''$ we will consider number as $\left( 2,1 \right)$
$+\times +=+$
$+\times -=-$
$-\times +=-$
$-\times -=+$
Note: Let we have to factorize the equation ${{x}^{2}}-11x+24=0,$ As, in the given equation,
${{x}^{2}}-11x+24=0$
We will not consider $\left( 8,3 \right)$ as pairs of numbers, as here $''b''$ is negative and $''c''$ is positive, so we need
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

