Answer
Verified
430.2k+ views
Hint: This is a question of quadratic equations. The quadratic equation can be written as a multiplication of two linear equations. These linear equations represent the roots of the quadratic equation, one each. Factoring a quadratic equation means representing the equation in the multiplication of two linear functions. The general form of the quadratic equation as a product of two linear equation can be given as\[m\left( x-a \right)\left( x-b \right)\] where m is a coefficient of \[{{x}^{2}}\] and a, b are roots.
Complete step by step answer:
Here we can see the given equation is \[3{{x}^{2}}-8x=-4\] which can be rewritten as
\[3{{x}^{2}}-8x+4=0\]
We will solve the above equation using the Quadratic formula. The roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] is given as
\[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Comparing equation \[3{{x}^{2}}-8x=-4\]and \[a{{x}^{2}}+bx+c=0\]we get the parameters as
a= 3, b= -8 and c= 4
Substituting these values in the Quadratic formula we get
\[\Rightarrow \] \[\dfrac{-(-8)\pm \sqrt{{{8}^{2}}-4(3)(4)}}{2(3)}\]
Solving the expression inside square root we get
\[\begin{align}
& \\
& \Rightarrow \dfrac{8\pm \sqrt{64-48}}{6} \\
\end{align}\]
\[\Rightarrow \dfrac{8\pm \sqrt{16}}{6}\]
Now on solving further and putting \[\sqrt{16}=4\], we get
\[\Rightarrow \]\[\dfrac{8\pm 4}{6}\]
Now we know that the two roots are given as \[\dfrac{8+4}{6}\] and \[\dfrac{8-4}{6}\].
Solving further we get
\[\dfrac{12}{6},\dfrac{4}{6}\]
Hence the roots of the equation are \[2,\dfrac{2}{3}\] ( by reducing the fractions).
Now as we know the factors of the equation can be given as \[m\left( x-2 \right)\left( x-\dfrac{2}{3} \right)\], where m is the coefficient of \[{{x}^{2}}\].
From seeing this equation, \[3{{x}^{2}}-8x+4=0\], m can be given as 3.
Hence factor of \[3{{x}^{2}}-8x+4=0\] is \[3\left( x-2 \right)\left( x-\dfrac{2}{3} \right)\] or \[\left( x-2 \right)\left( 3x-2 \right)\].
Note:
Be attentive while calculating and substituting values of a, b, and c in the Quadratic formula.
The factors of the quadratic equation can also be found using the completing squares form.
Where the equation is converted into factors by forming it into the form \[{{a}^{2}}-2ab+{{b}^{2}}\]and then factors are given as (a+b)(a-b).
Complete step by step answer:
Here we can see the given equation is \[3{{x}^{2}}-8x=-4\] which can be rewritten as
\[3{{x}^{2}}-8x+4=0\]
We will solve the above equation using the Quadratic formula. The roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] is given as
\[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
Comparing equation \[3{{x}^{2}}-8x=-4\]and \[a{{x}^{2}}+bx+c=0\]we get the parameters as
a= 3, b= -8 and c= 4
Substituting these values in the Quadratic formula we get
\[\Rightarrow \] \[\dfrac{-(-8)\pm \sqrt{{{8}^{2}}-4(3)(4)}}{2(3)}\]
Solving the expression inside square root we get
\[\begin{align}
& \\
& \Rightarrow \dfrac{8\pm \sqrt{64-48}}{6} \\
\end{align}\]
\[\Rightarrow \dfrac{8\pm \sqrt{16}}{6}\]
Now on solving further and putting \[\sqrt{16}=4\], we get
\[\Rightarrow \]\[\dfrac{8\pm 4}{6}\]
Now we know that the two roots are given as \[\dfrac{8+4}{6}\] and \[\dfrac{8-4}{6}\].
Solving further we get
\[\dfrac{12}{6},\dfrac{4}{6}\]
Hence the roots of the equation are \[2,\dfrac{2}{3}\] ( by reducing the fractions).
Now as we know the factors of the equation can be given as \[m\left( x-2 \right)\left( x-\dfrac{2}{3} \right)\], where m is the coefficient of \[{{x}^{2}}\].
From seeing this equation, \[3{{x}^{2}}-8x+4=0\], m can be given as 3.
Hence factor of \[3{{x}^{2}}-8x+4=0\] is \[3\left( x-2 \right)\left( x-\dfrac{2}{3} \right)\] or \[\left( x-2 \right)\left( 3x-2 \right)\].
Note:
Be attentive while calculating and substituting values of a, b, and c in the Quadratic formula.
The factors of the quadratic equation can also be found using the completing squares form.
Where the equation is converted into factors by forming it into the form \[{{a}^{2}}-2ab+{{b}^{2}}\]and then factors are given as (a+b)(a-b).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE