Answer
Verified
429.9k+ views
Hint: In this problem, we have to find the factor of the given equation. We can take the common terms from the given equation, to find the factor. We know that the given equation has \[3{{x}^{2}}\] as the common term. We can take the common term outside and we will get the factor of the given equation. we can multiply the factors again to check whether the factors found are correct. We can also use algebraic formulas when the given equation is a perfect square equation.
Complete step by step solution:
We know that the given equation is,
\[3{{x}^{3}}-9{{x}^{2}}\]
We know that the given equation has \[3{{x}^{2}}\] as the common term.
We can now take the common term outside, we get
\[\Rightarrow 3{{x}^{2}}\left( x-3 \right)\]
We can now multiply the above factors to check whether the factors are correct,
\[\Rightarrow 3{{x}^{2}}\left( x-3 \right)=3{{x}^{3}}-9{{x}^{2}}\]
Therefore, the factors of the given equation \[3{{x}^{3}}-9{{x}^{2}}\] are \[3{{x}^{2}}\left( x-3 \right)\]..
Note: Students make mistakes while taking the common terms outside from the given equation. In order to check for the correct factors, we can again multiply for the given equation. We know that the given equation has \[3{{x}^{2}}\] as the common term. We can take the common term outside and we will get the factor of the given equation. we can multiply the factors again to check whether the factors found are correct. We can also use algebraic formulas when the given equation is a perfect square equation.
Complete step by step solution:
We know that the given equation is,
\[3{{x}^{3}}-9{{x}^{2}}\]
We know that the given equation has \[3{{x}^{2}}\] as the common term.
We can now take the common term outside, we get
\[\Rightarrow 3{{x}^{2}}\left( x-3 \right)\]
We can now multiply the above factors to check whether the factors are correct,
\[\Rightarrow 3{{x}^{2}}\left( x-3 \right)=3{{x}^{3}}-9{{x}^{2}}\]
Therefore, the factors of the given equation \[3{{x}^{3}}-9{{x}^{2}}\] are \[3{{x}^{2}}\left( x-3 \right)\]..
Note: Students make mistakes while taking the common terms outside from the given equation. In order to check for the correct factors, we can again multiply for the given equation. We know that the given equation has \[3{{x}^{2}}\] as the common term. We can take the common term outside and we will get the factor of the given equation. we can multiply the factors again to check whether the factors found are correct. We can also use algebraic formulas when the given equation is a perfect square equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE