Answer
Verified
429.9k+ views
Hint: When we factorize a quadratic equation $a{{x}^{2}}+bx+c$ we have to find pair of number whose sum is equal to b and product equal to product of a and c . Then we can write bx as the sum of the 2 terms. Here We can split -4x to 12x and -16x to solve this question.
Complete step by step solution:
The given equation is $8{{x}^{2}}-4x-24$ which is a quadratic equation. if we compare the equation to standard quadratic equation $a{{x}^{2}}+bx+c$ then a = 8, b = -4 and c = -24
To factor a quadratic equation, we can find two numbers m and n such that the sum of m and n is equal to b and the product of m and n is $ac$. Then we can split $bx$ to $mx+nx$ then we can factor the equation easily.
In our case ac = -192 and b = -4
So pair of 2 numbers whose product is -192 and sum -4 is ( 12 ,-16)
We can -4x split to 12x – 16x
So $\Rightarrow 8{{x}^{2}}-4x-24=8{{x}^{2}}+12x-16x-24$
Taking 4x common in the first half of the equation and taking -8 common in the second half of the equation.
$\Rightarrow 8{{x}^{2}}-4x-24=4x\left( 2x+3 \right)-8\left( 2x+3 \right)$
Taking 2x + 3 common
$\Rightarrow 8{{x}^{2}}-4x-24=\left( 4x-8 \right)\left( 2x+3 \right)$
We can take 4 common from 4x - 8
$\Rightarrow 8{{x}^{2}}-4x-24=4\left( x-2 \right)\left( 2x+3 \right)$
Note:
While factoring a quadratic equation we can’t always split $bx$ such that their product is equal to ac because sometimes the roots can be irrational numbers. In that case we can find the roots of the equation by formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Complete step by step solution:
The given equation is $8{{x}^{2}}-4x-24$ which is a quadratic equation. if we compare the equation to standard quadratic equation $a{{x}^{2}}+bx+c$ then a = 8, b = -4 and c = -24
To factor a quadratic equation, we can find two numbers m and n such that the sum of m and n is equal to b and the product of m and n is $ac$. Then we can split $bx$ to $mx+nx$ then we can factor the equation easily.
In our case ac = -192 and b = -4
So pair of 2 numbers whose product is -192 and sum -4 is ( 12 ,-16)
We can -4x split to 12x – 16x
So $\Rightarrow 8{{x}^{2}}-4x-24=8{{x}^{2}}+12x-16x-24$
Taking 4x common in the first half of the equation and taking -8 common in the second half of the equation.
$\Rightarrow 8{{x}^{2}}-4x-24=4x\left( 2x+3 \right)-8\left( 2x+3 \right)$
Taking 2x + 3 common
$\Rightarrow 8{{x}^{2}}-4x-24=\left( 4x-8 \right)\left( 2x+3 \right)$
We can take 4 common from 4x - 8
$\Rightarrow 8{{x}^{2}}-4x-24=4\left( x-2 \right)\left( 2x+3 \right)$
Note:
While factoring a quadratic equation we can’t always split $bx$ such that their product is equal to ac because sometimes the roots can be irrational numbers. In that case we can find the roots of the equation by formula $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE