Answer
Verified
441.3k+ views
Hint:
We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ to factor the given polynomial $ 9{{x}^{2}}-25 $ . We assume the values of $ a=3x;b=5 $ . The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorization is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial $ 9{{x}^{2}}-25 $ , we apply the factorisation identity of difference of two squares as $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
We get $ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}} $ . We put the value of $ a=3x;b=5 $ .
Factorisation of the polynomial gives us
$ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}}=\left( 3x+5 \right)\left( 3x-5 \right) $ .
These two multiplied linear polynomials can’t be broken anymore.
Therefore, the final factorisation of $ 9{{x}^{2}}-25 $ is $ \left( 3x+5 \right)\left( 3x-5 \right) $ .
Note:
The formula of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ derives from the solution identity of
\[\begin{align}
& {{a}^{2}}-{{b}^{2}} \\
& ={{a}^{2}}-ab+ab-{{b}^{2}} \\
& =a\left( a-b \right)+b\left( a-b \right) \\
& =\left( a+b \right)\left( a-b \right) \\
\end{align}\]
We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ to factor the given polynomial $ 9{{x}^{2}}-25 $ . We assume the values of $ a=3x;b=5 $ . The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorization is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial $ 9{{x}^{2}}-25 $ , we apply the factorisation identity of difference of two squares as $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
We get $ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}} $ . We put the value of $ a=3x;b=5 $ .
Factorisation of the polynomial gives us
$ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}}=\left( 3x+5 \right)\left( 3x-5 \right) $ .
These two multiplied linear polynomials can’t be broken anymore.
Therefore, the final factorisation of $ 9{{x}^{2}}-25 $ is $ \left( 3x+5 \right)\left( 3x-5 \right) $ .
Note:
The formula of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ derives from the solution identity of
\[\begin{align}
& {{a}^{2}}-{{b}^{2}} \\
& ={{a}^{2}}-ab+ab-{{b}^{2}} \\
& =a\left( a-b \right)+b\left( a-b \right) \\
& =\left( a+b \right)\left( a-b \right) \\
\end{align}\]
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers