Answer
Verified
396k+ views
Hint: In this problem, we have to find the factor of the given quadratic equation. we have to factorize the given quadratic equation by splitting the middle term (i.e. \[ - 23x\]) into two parts such that their sum is equal to middle term (i.e. \[ - 23x\]) and product to equal to constant term (i.e. \[ + 132\]).
Complete step-by-step solution:
This is a problem based on quadratic equations. Quadratic equations are the polynomial equation whose highest degree is \[2\]. The standard form of any quadratic equation is \[a{x^2} + bx + c = 0\], where \[a\], \[b\] and \[c\] are constant real numbers and \[x\] is a variable .
If \[\alpha \] and \[\beta \] are roots of the given quadratic equation. Then \[(x - \alpha )\] and \[(x - \beta )\] is the factor of the quadratic equation.
i.e. \[a{x^2} + bx + c = (x - \alpha )(x - \beta )\].
Now consider the given quadratic equation,
\[ \Rightarrow {x^2} - 23x + 132\]
The middle term of the above quadratic equation is \[ - 23x\]. We break the middle term into two parts (\[ - 12x\], \[ - 11x\]) such that their sum is \[ - 23x\] and their product is the constant term i.e. \[ + 132\].
\[ \Rightarrow {x^2} - 12x - 11x + 132\]
Taking out \[x\] as common in first two terms and \[ - 11\] as common in last two term we get
\[ \Rightarrow x(x - 12) - 11(x - 12)\]
Taking out \[(x - 12)\] as common from both terms we have,
\[ \Rightarrow (x - 12)(x - 11)\]
Hence, \[{x^2} - 23x + 132 = (x - 12)(x - 11)\] is the required factorisation of a given quadratic equation.
Note: The standard form of any quadratic equation is \[a{x^2} + bx + c = 0\] , where \[a\], \[b\] and \[c\] are constant real numbers and \[x\] is a variable .
The quadratic equation can factorise by splitting the middle term.
The product of factors can be written as a quadratic equation.
The roots of the quadratic equation is given by \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step-by-step solution:
This is a problem based on quadratic equations. Quadratic equations are the polynomial equation whose highest degree is \[2\]. The standard form of any quadratic equation is \[a{x^2} + bx + c = 0\], where \[a\], \[b\] and \[c\] are constant real numbers and \[x\] is a variable .
If \[\alpha \] and \[\beta \] are roots of the given quadratic equation. Then \[(x - \alpha )\] and \[(x - \beta )\] is the factor of the quadratic equation.
i.e. \[a{x^2} + bx + c = (x - \alpha )(x - \beta )\].
Now consider the given quadratic equation,
\[ \Rightarrow {x^2} - 23x + 132\]
The middle term of the above quadratic equation is \[ - 23x\]. We break the middle term into two parts (\[ - 12x\], \[ - 11x\]) such that their sum is \[ - 23x\] and their product is the constant term i.e. \[ + 132\].
\[ \Rightarrow {x^2} - 12x - 11x + 132\]
Taking out \[x\] as common in first two terms and \[ - 11\] as common in last two term we get
\[ \Rightarrow x(x - 12) - 11(x - 12)\]
Taking out \[(x - 12)\] as common from both terms we have,
\[ \Rightarrow (x - 12)(x - 11)\]
Hence, \[{x^2} - 23x + 132 = (x - 12)(x - 11)\] is the required factorisation of a given quadratic equation.
Note: The standard form of any quadratic equation is \[a{x^2} + bx + c = 0\] , where \[a\], \[b\] and \[c\] are constant real numbers and \[x\] is a variable .
The quadratic equation can factorise by splitting the middle term.
The product of factors can be written as a quadratic equation.
The roots of the quadratic equation is given by \[\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE