Answer
Verified
430.2k+ views
Hint: Here in this question, we need to graph the function of sinx. With the help of that, we will be able to find all the values lying in the period of sinx. It will help you to find the trigonometric ratios for different angles of sine. Sine is the basic function of trigonometry, so it will also help in finding the values of derived functions.
Complete step by step answer:
Let’s discuss the most important function of trigonometry.
As we are all aware that sine is the basic function of the trigonometry. Apart from sine, cosine is also the one which contributes in deriving other functions. When we say sin$\theta $, here $\theta $ represents angle in either degrees or in radians.
In the above triangle, $\theta $ is the angle at C. So,
sin$\theta $ = $\dfrac{perpendicular(P)}{hypotenuse(H)}$
Functions which are derived from basic functions are:
$\Rightarrow $cosec$\theta $ = $\dfrac{1}{\sin \theta }$
$\Rightarrow $sec$\theta $ = $\dfrac{1}{\cos \theta }$
$\Rightarrow $tan$\theta $ = $\dfrac{\sin \theta }{\cos \theta }$ = $\dfrac{1}{\cot \theta }$
$\Rightarrow $cot$\theta $ = $\dfrac{1}{\tan \theta }$ = $\dfrac{\cos \theta }{\sin \theta }$
Now, let’s make a table of trigonometric ratios for all the trigonometric functions i.e. sin, cos, tan, cot, sec and cosec.
Period of sinx is $2\pi $. Let’s see its graphical representation.
From the graph, we can see that sinx completes one full cycle of ${{360}^{\circ }}$ i.e. $2\pi $.
Note:
For every even angle formed of sine like $2\pi $, $4\pi $, $6\pi $ and so on, the value will be 0. Sine is a periodic function. It has a fixed interval of $2\pi $. It completes its half cycle at $\pi $ i.e. ${{180}^{\circ }}$. Trigonometric tables are used to find trigonometric ratios at different angles formed in the graph. If we plot all the trigonometric ratios on the graph till $2\pi $, we will get the same curve.
Complete step by step answer:
Let’s discuss the most important function of trigonometry.
As we are all aware that sine is the basic function of the trigonometry. Apart from sine, cosine is also the one which contributes in deriving other functions. When we say sin$\theta $, here $\theta $ represents angle in either degrees or in radians.
In the above triangle, $\theta $ is the angle at C. So,
sin$\theta $ = $\dfrac{perpendicular(P)}{hypotenuse(H)}$
Functions which are derived from basic functions are:
$\Rightarrow $cosec$\theta $ = $\dfrac{1}{\sin \theta }$
$\Rightarrow $sec$\theta $ = $\dfrac{1}{\cos \theta }$
$\Rightarrow $tan$\theta $ = $\dfrac{\sin \theta }{\cos \theta }$ = $\dfrac{1}{\cot \theta }$
$\Rightarrow $cot$\theta $ = $\dfrac{1}{\tan \theta }$ = $\dfrac{\cos \theta }{\sin \theta }$
Now, let’s make a table of trigonometric ratios for all the trigonometric functions i.e. sin, cos, tan, cot, sec and cosec.
Trigonometric ratios(angle $\theta $ in degrees) | ${{0}^{\circ }}$ | ${{30}^{\circ }}$ | ${{45}^{\circ }}$ | ${{60}^{\circ }}$ | ${{90}^{\circ }}$ |
sin$\theta $ | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{\sqrt{3}}{2}$ | 1 |
cos$\theta $ | 1 | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{1}{2}$ | 0 |
tan$\theta $ | 0 | $\dfrac{1}{\sqrt{3}}$ | 1 | $\sqrt{3}$ | $\infty $ |
cosec$\theta $ | $\infty $ | 2 | $\sqrt{2}$ | $\dfrac{2}{\sqrt{3}}$ | 1 |
sec$\theta $ | 1 | $\dfrac{2}{\sqrt{3}}$ | $\sqrt{2}$ | 2 | $\infty $ |
cot$\theta $ | $\infty $ | $\sqrt{3}$ | 1 | $\dfrac{1}{\sqrt{3}}$ | 0 |
Period of sinx is $2\pi $. Let’s see its graphical representation.
From the graph, we can see that sinx completes one full cycle of ${{360}^{\circ }}$ i.e. $2\pi $.
Note:
For every even angle formed of sine like $2\pi $, $4\pi $, $6\pi $ and so on, the value will be 0. Sine is a periodic function. It has a fixed interval of $2\pi $. It completes its half cycle at $\pi $ i.e. ${{180}^{\circ }}$. Trigonometric tables are used to find trigonometric ratios at different angles formed in the graph. If we plot all the trigonometric ratios on the graph till $2\pi $, we will get the same curve.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE