Answer
Verified
427.8k+ views
Hint: The logarithm base b of a number n is the number x that when b is raised to \[{{x}^{th}}\] power, the resulting value is n. That is, this can be written as \[{{\log }_{b}}n=x\Rightarrow {{b}^{x}}=n\]. The logarithm with base \[e\] is called the natural logarithm representing the \[\ln \] function. So, we can write the logarithm base \[e\] of a number n is the number x which can be expressed in exponents as \[\ln n={{\log }_{e}}n=x\Rightarrow {{e}^{x}}=n\].
Complete step by step answer:
\[\ln \] is called the natural logarithm with base \[e\] and \[\ln x\]is also called an inverse of exponential function\[{{e}^{x}}\]. \[e\] is an irrational number which is a constant and its value is 2.718281828459. It can also be written as \[{{\log }_{e}}x\]. \[\ln x\]is undefined when \[x\underline{<}0\].
If we observe the given expression, we get to know that the base of this logarithmic function is \[e\] which is a natural logarithm.
We can directly find the logarithmic graph by taking the image of a graph of an exponential function with respect to any of the lines\[y=\pm x\] based on the existence of the graphs.
The below graph says that \[\ln x\] is the image of \[{{e}^{x}}\] through \[y=x\].
In the below graph, first we draw a graph of \[{{e}^{x}}\]and \[y=x\] then we take the image of \[{{e}^{x}}\] which is the graph of \[\ln x\]. In this way we draw the graph of \[\ln x\].
The graph of \[y=\ln x\] is shown in the below figure:
Note:
We should be thorough with the logarithm and exponent concept to avoid mistakes like taking base 10 for \[\ln \] function instead of \[e\]. \[\ln x\] is valid only for values \[x>0\]. \[\ln x\] meets \[x-axis\]only at \[(1,0)\]. \[{{e}^{x}}\]gives only positive values.
Complete step by step answer:
\[\ln \] is called the natural logarithm with base \[e\] and \[\ln x\]is also called an inverse of exponential function\[{{e}^{x}}\]. \[e\] is an irrational number which is a constant and its value is 2.718281828459. It can also be written as \[{{\log }_{e}}x\]. \[\ln x\]is undefined when \[x\underline{<}0\].
If we observe the given expression, we get to know that the base of this logarithmic function is \[e\] which is a natural logarithm.
We can directly find the logarithmic graph by taking the image of a graph of an exponential function with respect to any of the lines\[y=\pm x\] based on the existence of the graphs.
The below graph says that \[\ln x\] is the image of \[{{e}^{x}}\] through \[y=x\].
In the below graph, first we draw a graph of \[{{e}^{x}}\]and \[y=x\] then we take the image of \[{{e}^{x}}\] which is the graph of \[\ln x\]. In this way we draw the graph of \[\ln x\].
The graph of \[y=\ln x\] is shown in the below figure:
Note:
We should be thorough with the logarithm and exponent concept to avoid mistakes like taking base 10 for \[\ln \] function instead of \[e\]. \[\ln x\] is valid only for values \[x>0\]. \[\ln x\] meets \[x-axis\]only at \[(1,0)\]. \[{{e}^{x}}\]gives only positive values.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Find the value of the expression given below sin 30circ class 11 maths CBSE
What is the length of the alimentary canal in human class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is BLO What is the full form of BLO class 8 social science CBSE