How do you graph \[\ln x\]?
Answer
Verified
446.7k+ views
Hint: The logarithm base b of a number n is the number x that when b is raised to \[{{x}^{th}}\] power, the resulting value is n. That is, this can be written as \[{{\log }_{b}}n=x\Rightarrow {{b}^{x}}=n\]. The logarithm with base \[e\] is called the natural logarithm representing the \[\ln \] function. So, we can write the logarithm base \[e\] of a number n is the number x which can be expressed in exponents as \[\ln n={{\log }_{e}}n=x\Rightarrow {{e}^{x}}=n\].
Complete step by step answer:
\[\ln \] is called the natural logarithm with base \[e\] and \[\ln x\]is also called an inverse of exponential function\[{{e}^{x}}\]. \[e\] is an irrational number which is a constant and its value is 2.718281828459. It can also be written as \[{{\log }_{e}}x\]. \[\ln x\]is undefined when \[x\underline{<}0\].
If we observe the given expression, we get to know that the base of this logarithmic function is \[e\] which is a natural logarithm.
We can directly find the logarithmic graph by taking the image of a graph of an exponential function with respect to any of the lines\[y=\pm x\] based on the existence of the graphs.
The below graph says that \[\ln x\] is the image of \[{{e}^{x}}\] through \[y=x\].
In the below graph, first we draw a graph of \[{{e}^{x}}\]and \[y=x\] then we take the image of \[{{e}^{x}}\] which is the graph of \[\ln x\]. In this way we draw the graph of \[\ln x\].
The graph of \[y=\ln x\] is shown in the below figure:
Note:
We should be thorough with the logarithm and exponent concept to avoid mistakes like taking base 10 for \[\ln \] function instead of \[e\]. \[\ln x\] is valid only for values \[x>0\]. \[\ln x\] meets \[x-axis\]only at \[(1,0)\]. \[{{e}^{x}}\]gives only positive values.
Complete step by step answer:
\[\ln \] is called the natural logarithm with base \[e\] and \[\ln x\]is also called an inverse of exponential function\[{{e}^{x}}\]. \[e\] is an irrational number which is a constant and its value is 2.718281828459. It can also be written as \[{{\log }_{e}}x\]. \[\ln x\]is undefined when \[x\underline{<}0\].
If we observe the given expression, we get to know that the base of this logarithmic function is \[e\] which is a natural logarithm.
We can directly find the logarithmic graph by taking the image of a graph of an exponential function with respect to any of the lines\[y=\pm x\] based on the existence of the graphs.
The below graph says that \[\ln x\] is the image of \[{{e}^{x}}\] through \[y=x\].
In the below graph, first we draw a graph of \[{{e}^{x}}\]and \[y=x\] then we take the image of \[{{e}^{x}}\] which is the graph of \[\ln x\]. In this way we draw the graph of \[\ln x\].
The graph of \[y=\ln x\] is shown in the below figure:
Note:
We should be thorough with the logarithm and exponent concept to avoid mistakes like taking base 10 for \[\ln \] function instead of \[e\]. \[\ln x\] is valid only for values \[x>0\]. \[\ln x\] meets \[x-axis\]only at \[(1,0)\]. \[{{e}^{x}}\]gives only positive values.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE