Answer
Verified
435.9k+ views
Hint: First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the point at $x = 0$, $x = \dfrac{\pi }{4}$, $x = \dfrac{\pi }{2}$, $x = \dfrac{{3\pi }}{4}$, $x = \pi $. List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.
Formula used:
Period: The period goes from one peak to the next (or from any point to the next matching point).
Amplitude: The amplitude is the height from the center line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide them by $2$.
Phase Shift: The phase shift is how far the function is shifted horizontally from the usual position.
Vertical Shift: The vertical shift is how far the function is shifted vertically from the usual position.
Complete step by step answer:
Use the form $a\cos \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \cos 2x$with $a\cos \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 2$, $c = 0$ and $d = 0$.
Find the amplitude $\left| a \right|$.
Here, $a = 1$.
Amplitude, $\left| a \right| = 1$.
The period of the function can be calculated using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $2$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 2 \right|}}$
The absolute value is the distance between a number and zero.
The distance between $0$ and $2$ is$2$.
Period: $\dfrac{{2\pi }}{2}$
Cancel the common factor of $2$.
Period: $\dfrac{{\not{2}\pi }}{{\not{2}}}$
Divide $\pi $ by $1$.
Period: $\pi $
Find the phase shift using the formula $\dfrac{c}{b}$.
The phase shift of the function can be calculated from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{2}$
Divide $0$ by $2$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
Now we have to List the properties of the trigonometric function.
Amplitude: $1$
Period: $\pi $
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Also, we select a few points to graph.
Find the point at $x = 0$.
Replace the variable $x$ with $0$ in the expression.
$f\left( 0 \right) = \cos \left( {2\left( 0 \right)} \right)$
Multiply $2$ by $0$.
$f\left( 0 \right) = \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $x = \dfrac{\pi }{4}$.
Replace the variable $x$ with $\dfrac{\pi }{4}$ in the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)$
Cancel the common factor of $2$.
Factor $2$ out of $4$.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{{2\left( 2 \right)}}} \right)} \right)$
Cancel the common factor.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{2 \times \not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{2}} \right)$
The exact value of $\cos \left( {\dfrac{\pi }{2}} \right)$ is $0$.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = 0$
The final answer is $0$.
Also, we have to find the point at $x = \dfrac{\pi }{2}$.
Replace the variable $x$ with $\dfrac{\pi }{2}$ in the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)$
Cancel the common factor of $2$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{\not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( \pi \right)$
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
Make the expression negative because cosine is negative in the second quadrant.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1 \times 1$
Multiply $ - 1$ by $1$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1$
The final answer is $ - 1$.
Again, we have to find the point at $x = \dfrac{{3\pi }}{4}$.
Replace the variable $x$ with $\dfrac{{3\pi }}{4}$ in the expression.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)$
Cancel the common factor of $2$.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{{2\left( 2 \right)}}} \right)} \right)$
Cancel the common factor.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{{3\pi }}{{2 \cdot \not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)$
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = - \cos \left( {\dfrac{\pi }{2}} \right)$
The exact value of $\cos \left( {\dfrac{\pi }{2}} \right)$ is $0$.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = 0$
The final answer is $0$.
Find the point at $x = \pi $.
Replace the variable $x$ with $\pi $ in the expression.
$ \Rightarrow f\left( \pi \right) = \cos \left( {2\left( \pi \right)} \right)$
$2\pi $ is a full rotation so replace with $0$.
$ \Rightarrow f\left( \pi \right) = \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( \pi \right) = 1$
The final answer is $1$.
List the points in a table.
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: $1$
Period: $\pi $
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Note: $\cos 2x$ and $2\cos x$ are entirely different terms.
$2\cos x$ is twice the cosine of angle $x$. It lies between $ - 2$ and $2$.
$\cos 2x$ is the cosine of angle $2x$. It is two times the angle $x$. The value of $\cos 2x$ is between $ - 1$ and $1$.
Formula used:
Period: The period goes from one peak to the next (or from any point to the next matching point).
Amplitude: The amplitude is the height from the center line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide them by $2$.
Phase Shift: The phase shift is how far the function is shifted horizontally from the usual position.
Vertical Shift: The vertical shift is how far the function is shifted vertically from the usual position.
Complete step by step answer:
Use the form $a\cos \left( {bx - c} \right) + d$ to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation $y = \cos 2x$with $a\cos \left( {bx - c} \right) + d$ and find variables $a,b,c$ and $d$.
$a = 1$, $b = 2$, $c = 0$ and $d = 0$.
Find the amplitude $\left| a \right|$.
Here, $a = 1$.
Amplitude, $\left| a \right| = 1$.
The period of the function can be calculated using $\dfrac{{2\pi }}{{\left| b \right|}}$.
Period: $\dfrac{{2\pi }}{{\left| b \right|}}$
Replace $b$ with $2$ in the formula for period.
Period: $\dfrac{{2\pi }}{{\left| 2 \right|}}$
The absolute value is the distance between a number and zero.
The distance between $0$ and $2$ is$2$.
Period: $\dfrac{{2\pi }}{2}$
Cancel the common factor of $2$.
Period: $\dfrac{{\not{2}\pi }}{{\not{2}}}$
Divide $\pi $ by $1$.
Period: $\pi $
Find the phase shift using the formula $\dfrac{c}{b}$.
The phase shift of the function can be calculated from $\dfrac{c}{b}$.
Phase Shift: $\dfrac{c}{b}$
Replace the values of $c$ and $b$ in the equation for phase shift.
Phase Shift: $\dfrac{0}{2}$
Divide $0$ by $2$.
Phase Shift: $0$
Find the vertical shift $d$.
Vertical Shift: $0$
Now we have to List the properties of the trigonometric function.
Amplitude: $1$
Period: $\pi $
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
Also, we select a few points to graph.
Find the point at $x = 0$.
Replace the variable $x$ with $0$ in the expression.
$f\left( 0 \right) = \cos \left( {2\left( 0 \right)} \right)$
Multiply $2$ by $0$.
$f\left( 0 \right) = \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( 0 \right) = 1$
The final answer is $1$.
Find the point at $x = \dfrac{\pi }{4}$.
Replace the variable $x$ with $\dfrac{\pi }{4}$ in the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)$
Cancel the common factor of $2$.
Factor $2$ out of $4$.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{{2\left( 2 \right)}}} \right)} \right)$
Cancel the common factor.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{2 \times \not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{2}} \right)$
The exact value of $\cos \left( {\dfrac{\pi }{2}} \right)$ is $0$.
$ \Rightarrow f\left( {\dfrac{\pi }{4}} \right) = 0$
The final answer is $0$.
Also, we have to find the point at $x = \dfrac{\pi }{2}$.
Replace the variable $x$ with $\dfrac{\pi }{2}$ in the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)$
Cancel the common factor of $2$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{\not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( \pi \right)$
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
Make the expression negative because cosine is negative in the second quadrant.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1 \times 1$
Multiply $ - 1$ by $1$.
$ \Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1$
The final answer is $ - 1$.
Again, we have to find the point at $x = \dfrac{{3\pi }}{4}$.
Replace the variable $x$ with $\dfrac{{3\pi }}{4}$ in the expression.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)$
Cancel the common factor of $2$.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{{2\left( 2 \right)}}} \right)} \right)$
Cancel the common factor.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{{3\pi }}{{2 \cdot \not{2}}}} \right)} \right)$
Rewrite the expression.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)$
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = - \cos \left( {\dfrac{\pi }{2}} \right)$
The exact value of $\cos \left( {\dfrac{\pi }{2}} \right)$ is $0$.
$ \Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = 0$
The final answer is $0$.
Find the point at $x = \pi $.
Replace the variable $x$ with $\pi $ in the expression.
$ \Rightarrow f\left( \pi \right) = \cos \left( {2\left( \pi \right)} \right)$
$2\pi $ is a full rotation so replace with $0$.
$ \Rightarrow f\left( \pi \right) = \cos \left( 0 \right)$
The exact value of $\cos \left( 0 \right)$ is $1$.
$ \Rightarrow f\left( \pi \right) = 1$
The final answer is $1$.
List the points in a table.
$x$ | $f\left( x \right)$ |
$0$ | $1$ |
$\dfrac{\pi }{4}$ | $0$ |
$\dfrac{\pi }{2}$ | $ - 1$ |
$\dfrac{{3\pi }}{4}$ | $0$ |
$\pi $ | $1$ |
The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: $1$
Period: $\pi $
Phase Shift: $0$($0$ to the right)
Vertical Shift: $0$
$x$ | $f\left( x \right)$ |
$0$ | $1$ |
$\dfrac{\pi }{4}$ | $0$ |
$\dfrac{\pi }{2}$ | $ - 1$ |
$\dfrac{{3\pi }}{4}$ | $0$ |
$\pi $ | $1$ |
Note: $\cos 2x$ and $2\cos x$ are entirely different terms.
$2\cos x$ is twice the cosine of angle $x$. It lies between $ - 2$ and $2$.
$\cos 2x$ is the cosine of angle $2x$. It is two times the angle $x$. The value of $\cos 2x$ is between $ - 1$ and $1$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE