Answer
Verified
428.7k+ views
Hint: Plotting a graph depends on the type of equation we have. A linear equation will always give a straight line, while a quadratic equation gives a parabolic shape. In the problem we have a linear equation, so we will get a straight line in the graph. For drawing a straight line, we need to have at least two points that satisfy the given linear equation. For finding the two points which satisfy the given line we need to take two points in the coordinate system like $\left( {a,0} \right)$ and $\left( {0,b} \right)$. Now we will substitute the points in the given equation and calculate the values of $a$ and $b$. Then take a minimum of 5 points and plot the points. After plotting the points, join the points with a smooth freehand curve and identify the curve that we have obtained.
Complete step by step solution:
We know that the graph of a function is the locus of points $\left( {x,y} \right)$ such that $y = f\left( x \right)$ where x, y are real numbers. We are given the following quadratic polynomial function,
$ \Rightarrow y = \dfrac{8}{3}x - 3$
So, let us put $y = 0$ and find the x-intercept. We have,
$ \Rightarrow 0 = \dfrac{8}{3}x - 3$
Move constant term on the other side,
$ \Rightarrow \dfrac{8}{3}x = 3$
Multiply both sides by $\dfrac{3}{8}$,
$ \Rightarrow x = 3 \times \dfrac{3}{8}$
Multiply the terms on the right side,
$ \Rightarrow x = \dfrac{9}{8}$
It means the curve cuts the x-axis at $\left( {\dfrac{9}{8},0} \right)$.
Let us put $x = 0$ and find the y-intercept. We have,
$ \Rightarrow y = \dfrac{8}{3} \times 0 - 3$
Simplify the terms,
$ \Rightarrow y = - 3$
It means the curve cuts the y-axis at $\left( {0, - 3} \right)$.
We have already two points for the equation $\left( {\dfrac{9}{8},0} \right)$ and $\left( {0, - 3} \right)$. We find y for three more points.
At $x = - 3$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times - 3 - 3$
Cancel out the common terms,
$ \Rightarrow y = - 8 - 3$
Simplify the terms,
$ \Rightarrow y = - 11$
At $x = 6$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times 6 - 3$
Cancel out the common terms,
$ \Rightarrow y = 16 - 3$
Simplify the terms,
$ \Rightarrow y = 13$
At $x = 3$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times 3 - 3$
Cancel out the common terms,
$ \Rightarrow y = 8 - 3$
Simplify the terms,
$ \Rightarrow y = 5$
So, we draw the table for x and y.
We plot the above points and join them to have the graph as
Note: For this type of problem in which a graph of linear equations is required to draw. If the graph of the equation is not coming to a straight line then we can say that the points taken are wrong as the graph of the linear equation is always a straight line. So, if the graph through given points is a straight line and passing through them then it will be a correct sketch for the given linear equation.
Complete step by step solution:
We know that the graph of a function is the locus of points $\left( {x,y} \right)$ such that $y = f\left( x \right)$ where x, y are real numbers. We are given the following quadratic polynomial function,
$ \Rightarrow y = \dfrac{8}{3}x - 3$
So, let us put $y = 0$ and find the x-intercept. We have,
$ \Rightarrow 0 = \dfrac{8}{3}x - 3$
Move constant term on the other side,
$ \Rightarrow \dfrac{8}{3}x = 3$
Multiply both sides by $\dfrac{3}{8}$,
$ \Rightarrow x = 3 \times \dfrac{3}{8}$
Multiply the terms on the right side,
$ \Rightarrow x = \dfrac{9}{8}$
It means the curve cuts the x-axis at $\left( {\dfrac{9}{8},0} \right)$.
Let us put $x = 0$ and find the y-intercept. We have,
$ \Rightarrow y = \dfrac{8}{3} \times 0 - 3$
Simplify the terms,
$ \Rightarrow y = - 3$
It means the curve cuts the y-axis at $\left( {0, - 3} \right)$.
We have already two points for the equation $\left( {\dfrac{9}{8},0} \right)$ and $\left( {0, - 3} \right)$. We find y for three more points.
At $x = - 3$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times - 3 - 3$
Cancel out the common terms,
$ \Rightarrow y = - 8 - 3$
Simplify the terms,
$ \Rightarrow y = - 11$
At $x = 6$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times 6 - 3$
Cancel out the common terms,
$ \Rightarrow y = 16 - 3$
Simplify the terms,
$ \Rightarrow y = 13$
At $x = 3$ we have,
$ \Rightarrow y = \dfrac{8}{3} \times 3 - 3$
Cancel out the common terms,
$ \Rightarrow y = 8 - 3$
Simplify the terms,
$ \Rightarrow y = 5$
So, we draw the table for x and y.
$X$ | $0$ | $ - \dfrac{9}{8}$ | $-3$ | $6$ | $3$ |
$Y$ | $-3$ | $0$ | $-11$ | $13$ | $5$ |
We plot the above points and join them to have the graph as
Note: For this type of problem in which a graph of linear equations is required to draw. If the graph of the equation is not coming to a straight line then we can say that the points taken are wrong as the graph of the linear equation is always a straight line. So, if the graph through given points is a straight line and passing through them then it will be a correct sketch for the given linear equation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers